Loading
1 Follower
0 Following
recepguel

Location

CH

Badges

1
0
0

Activity

Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Mon
Wed
Fri

Ratings Progression

Loading...

Challenge Categories

Loading...

Challenges Entered

Play in a realistic insurance market, compete for profit!

Latest submissions

See All
graded 119640

A dataset and open-ended challenge for music recommendation research

Latest submissions

No submissions made in this challenge.

5 Problems 21 Days. Can you solve it all?

Latest submissions

See All
graded 121432
graded 121408

Latest submissions

See All
graded 119655
failed 119647

5 Puzzles, 3 Weeks | Can you solve them all?

Latest submissions

See All
graded 119581
graded 119580
failed 119578

Project 2: Road extraction from satellite images

Latest submissions

See All
graded 119903
Participant Rating
e1ena7 0
Participant Rating
recepguel has not joined any teams yet...

AI Blitz 5 ⚑

Solutions to SOUSEN and IMGCOL (and OBJDE)

Almost 4 years ago

Unfortunately submitting just β€œ2” to SOUSEN produces decent results, as everyone knows at this point. So I did that. Also submitting baseline to OBJDE gave a decent ranking :frowning:
For IMGCOL, DeOldify produces very good results. Link:

The script I used to run DeOldify:

from deoldify import device
from deoldify.device_id import DeviceId
#choices: CPU, GPU0…GPU7
device.set(device=DeviceId.GPU0)

from deoldify.visualize import *
plt.style.use(β€˜dark_background’)
torch.backends.cudnn.benchmark=True
import warnings
warnings.filterwarnings(β€œignore”, category=UserWarning, message=".?Your .? set is empty.*?")

colorizer = get_image_colorizer(artistic=True)
render_factor=45

m=os.listdir(’./test_back_white_images’)
for file in m:
source_path = f"./test_back_white_images/{file}"
result_path = f"./test_color_images/{file}"
source_url=None
if source_url is not None:
result_path = colorizer.plot_transformed_image_from_url(url=source_url, path=source_path, render_factor=render_factor, compare=True)
else:
result_path = colorizer.plot_transformed_image(path=source_path, render_factor=render_factor, compare=True)
plt.close(β€˜all’)

Solution to TXTOCR

Almost 4 years ago

First, I did some preprocessing to get binary (black and white) images. For that I first converted images to grayscale using rgb2gray and then to binary using imbinarize in MATLAB.

Now that I have binary images, I just tweaked the following code to train my data:

The code is provided below. I also did some post-processing. It actually improved the result a lot. I took the predictions and calculated the Levenshtein distance between the predicted word and each word in the dictionary of the words in training set, and the replaced the predicted word with the word in the dictionary of the words in the training set with whom it has the smallest Levenshtein distance.

Code for postprocessing:

import pandas as pd
from Levenshtein import distance as levenshtein_distance
import numpy as np

xx=pd.read_csv(β€œpredictions.csv”)

ocr_list=[]
for i in range(10000):
etwas=xx.iloc[i][β€˜label’]
etwas=str(etwas)
metwas=etwas.split()
ocr_list.append(metwas)

yy=pd.read_csv(β€œtrain.csv”)
list2=[]
for i in range(40000):
z=yy.iloc[i][β€˜label’]
z=str(z)
zlist=z.split()
for j in zlist:
list2.append(j)

def distancer(x,y):
index=0
mymin=levenshtein_distance(x,y[0])
for i in range(len(y)):
m=levenshtein_distance(y[i],x)
if m < mymin:
mymin=m
index=i
return y[index]

for i in range(len(ocr_list)):
if len(ocr_list[i])==1:
ocr_list[i][0]=distancer(ocr_list[i][0],list2)
if len(ocr_list[i])==2:
ocr_list[i][0]=distancer(ocr_list[i][0],list2)
ocr_list[i][1]=distancer(ocr_list[i][1],list2)

for i in range(10000):
if xx.iloc[i][β€˜label’]==β€˜nan’:
xx.at[i, β€˜label’]=""
else:
xx.at[i,β€˜label’]=" ".join(ocr_list[i])

xx.to_csv(β€œsubmission.csv”, index=False)

Training code: From https://github.com/keras-team/keras-io/blob/master/examples/vision/captcha_ocr.py

#!/usr/bin/env python

coding: utf-8

In[28]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from pathlib import Path
from collections import Counter
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

import os
import re

def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
return [ atoiΒ© for c in re.split(’(\d+)’,text) ]

In[29]:

train_data_dir=os.listdir("./bwtrain")
train_data_dir.sort(key=natural_keys)
x_train=train_data_dir

In[30]:

y_train=pd.read_csv(β€œtrain.csv”)[β€˜label’].tolist()
for i in range(len(y_train)):
y_train[i]=str(y_train[i])
characters=set(β€˜abcdefghijklmnopqrstuvwxyz’)
characters.add(’ β€˜)
characters.add(’.’)

In[31]:

val_data_dir=os.listdir("./bwval")
val_data_dir.sort(key=natural_keys)
x_val=val_data_dir

In[32]:

y_val=pd.read_csv(β€œval.csv”)[β€˜label’].tolist()
for i in range(len(y_val)):
y_val[i]=str(y_val[i])

In[33]:

batch_size = 1
img_width = 256
img_height=256
downsample_factor = 4
max_length = max([len(label) for label in y_train])

In[34]:

for i in range(len(x_train)):
x_train[i]=f"./bwtrain/{i}.png"
for i in range(len(x_val)):
x_val[i]=f"./bwval/{i}.png"

x_train, y_train, x_val, y_val= np.array(x_train), np.array(y_train), np.array(x_val), np.array(y_val)

In[35]:

Mapping characters to integers

char_to_num = layers.experimental.preprocessing.StringLookup(
vocabulary=list(characters), num_oov_indices=0, mask_token=None
)

Mapping integers back to original characters

num_to_char = layers.experimental.preprocessing.StringLookup(
vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True
)

In[36]:

def encode_single_sample(img_path,label):
# 1. Read image
img = tf.io.read_file(img_path)
# 2. Decode and convert to grayscale
img = tf.io.decode_png(img, channels=0)
# 3. Convert to float32 in [0, 1] range
img = tf.image.convert_image_dtype(img, tf.float32)
# 4. Resize to the desired size
img = tf.image.resize(img, [img_height, img_width])
# 5. Transpose the image because we want the time
# dimension to correspond to the width of the image.
img = tf.transpose(img, perm=[1, 0, 2])
# 6. Map the characters in label to numbers
label = char_to_num(tf.strings.unicode_split(label, input_encoding=β€œUTF-8”))
# 7. Return a dict as our model is expecting two inputs
return {β€œimage”: img, β€œlabel”: label}

In[37]:

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))

train_dataset = (
train_dataset.map(
encode_single_sample, num_parallel_calls=tf.data.experimental.AUTOTUNE
)
.batch(batch_size)
.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
)

validation_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
validation_dataset = (
validation_dataset.map(
encode_single_sample, num_parallel_calls=tf.data.experimental.AUTOTUNE
)
.batch(batch_size)
.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
)
#print(list(train_dataset.as_numpy_iterator()))

In[38]:

class CTCLayer(layers.Layer):
def init(self, name=None):
super().init(name=name)
self.loss_fn = keras.backend.ctc_batch_cost

def call(self, y_true, y_pred):
    # Compute the training-time loss value and add it
    # to the layer using `self.add_loss()`.
    batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
    input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
    label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")

    input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
    label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")

    loss = self.loss_fn(y_true, y_pred, input_length, label_length)
    self.add_loss(loss)

    # At test time, just return the computed predictions
    return y_pred

In[39]:

def build_model():
# Inputs to the model
input_img = layers.Input(
shape=(img_width, img_height, 1), name=β€œimage”, dtype=β€œfloat32”
)
labels = layers.Input(name=β€œlabel”, shape=(None,), dtype=β€œfloat32”)

# First conv block
x = layers.Conv2D(
    32,
    (3, 3),
    activation="relu",
    kernel_initializer="he_normal",
    padding="same",
    name="Conv1",
)(input_img)
x = layers.MaxPooling2D((2, 2), name="pool1")(x)

# Second conv block
x = layers.Conv2D(
    64,
    (3, 3),
    activation="relu",
    kernel_initializer="he_normal",
    padding="same",
    name="Conv2",
)(x)
x = layers.MaxPooling2D((2, 2), name="pool2")(x)

# We have used two max pool with pool size and strides 2.
# Hence, downsampled feature maps are 4x smaller. The number of
# filters in the last layer is 64. Reshape accordingly before
# passing the output to the RNN part of the model
new_shape = ((img_width // 4), (img_height // 4) * 64)
x = layers.Reshape(target_shape=new_shape, name="reshape")(x)
x = layers.Dense(64, activation="relu", name="dense1")(x)
x = layers.Dropout(0.2)(x)

# RNNs
x = layers.Bidirectional(layers.LSTM(128, return_sequences=True, dropout=0.25))(x)
x = layers.Bidirectional(layers.LSTM(64, return_sequences=True, dropout=0.25))(x)

# Output layer
x = layers.Dense(len(characters) + 1, activation="softmax", name="dense2")(x)

# Add CTC layer for calculating CTC loss at each step
output = CTCLayer(name="ctc_loss")(labels, x)

# Define the model
model = keras.models.Model(
    inputs=[input_img, labels], outputs=output, name="ocr_model_v1"
)
# Optimizer
opt = keras.optimizers.Adam()
# Compile the model and return
model.compile(optimizer=opt)
return model

In[ ]:

Get the model

#model = build_model()
model=keras.models.load_model(’./OCRM’)
model.summary()

β€œβ€"

Training

β€œβ€"

epochs = 100
early_stopping_patience = 10

Add early stopping

early_stopping = keras.callbacks.EarlyStopping(
monitor=β€œval_loss”, patience=early_stopping_patience, restore_best_weights=True
)

checkpoint_filepath = β€˜./checkpoint’
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
monitor=β€˜val_loss’,
mode=β€˜max’,
save_best_only=True)

Train the model

history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=epochs,
callbacks=[early_stopping,model_checkpoint_callback],
)

In[ ]:

prediction_model = keras.models.Model(
model.get_layer(name=β€œimage”).input, model.get_layer(name=β€œdense2”).output
)
prediction_model.summary()

In[ ]:

A utility function to decode the output of the network

def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Use greedy search. For complex tasks, you can use beam search
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
:, :max_length
]
# Iterate over the results and get back the text
output_text = []
for res in results:
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode(β€œutf-8”)
output_text.append(res)
return output_text

In[ ]:

test_data_dir=os.listdir("./bwtest")
test_data_dir.sort(key=natural_keys)
x_test=test_data_dir
y_test=y_train[0:10000]
for i in range(len(x_test)):
x_test[i]=f"./bwtest/{i}.png"

    x_test=np.array(x_test)
    y_test=np.array(y_test)

    test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))

    test_dataset = (
                test_dataset.map(
                            encode_single_sample, num_parallel_calls=tf.data.experimental.AUTOTUNE
                                )
                    .batch(batch_size)
                        .prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
                        )

my_list=[]
for batch in test_dataset:
batch_images = batch[β€œimage”]
batch_labels = batch[β€œlabel”]

 preds = prediction_model.predict(batch_images)
 pred_texts = decode_batch_predictions(preds)
 my_list.append(pred_texts)
                                
 print(pred_texts)

with open(β€˜predictions.txt’, β€˜a’) as f:
for item in my_list:
f.write("%s\n" % item)

In[ ]:

#m=os.listdir("./bwtrain_copy")
#m.sort(key=natural_keys)

In[ ]:

for batch in validation_dataset.take(1):
batch_images = batch[β€œimage”]
batch_labels = batch[β€œlabel”]

preds = prediction_model.predict(batch_images)
pred_texts = decode_batch_predictions(preds)

orig_texts = []
for label in batch_labels:
    label = tf.strings.reduce_join(num_to_char(label)).numpy().decode("utf-8")
    orig_texts.append(label)

_, ax = plt.subplots(4, 4, figsize=(15, 5))
for i in range(len(pred_texts)):
    img = (batch_images[i, :, :, 0] * 255).numpy().astype(np.uint8)
    img = img.T
    title = f"Prediction: {pred_texts[i]}"
    ax[i // 4, i % 4].imshow(img, cmap="gray")
    ax[i // 4, i % 4].set_title(title)
    ax[i // 4, i % 4].axis("off")

plt.show()

Solution to TIMSER

Almost 4 years ago

It is just simple linear regression with log transformation (Here I did log log transformation but log transformation alone gives pretty much the same results). More importantly, I ignored training data completely as it is too much in the past and just introduces noise (most of the training data are from before the 2007 crisis, so it is to be expected that it is not very informative post-2007). I used only validation data for regression.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

In[68]:

val_df=pd.read_csv(β€˜val.csv’)
subm=pd.read_csv(β€˜sample_submission_copy.csv’)

In[69]:

X=np.arange(len(val_df)).reshape(-1,1)
Y=val_df.iloc[:,1].values.reshape(-1,1)
Y=np.log(Y)
Y=np.log(Y)

In[70]:

linear_regressor=LinearRegression(normalize=True)

In[71]:

linear_regressor.fit(X,Y)

In[72]:

test_X=np.arange(len(val_df),len(val_df)+1904).reshape(-1,1)

In[73]:

Y_pred=linear_regressor.predict(test_X)

In[74]:

plt.scatter(X,Y)
plt.plot(test_X, Y_pred, color=β€˜red’)
plt.show()

In[75]:

Y_pred= np.exp(np.exp(Y_pred))

In[76]:

Y_pred=pd.DataFrame(data=Y_pred, index=np.array(range(1904)), columns=np.array(range(1)))

In[77]:

subm[β€˜value’]=Y_pred

In[78]:

subma=subm.to_csv(β€˜submission.csv’)

recepguel has not provided any information yet.