Loading
0 Follower
0 Following
sourishg
Sourish Ghosh

Location

US

Badges

2
1
1

Connect

Activity

Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Mon
Wed
Fri

Ratings Progression

Loading...

Challenge Categories

Loading...

Challenges Entered

Understand semantic segmentation and monocular depth estimation from downward-facing drone images

Latest submissions

No submissions made in this challenge.

Airborne Object Tracking Challenge

Latest submissions

See All
failed 152916
graded 152096
graded 152030
Participant Rating
Participant Rating

SUADD'23- Scene Understanding for Autonomous Drone

Error in local evaluation

Over 1 year ago

When I run the file local_evaluation.py, I get the following error:

Predicting Segmentation Masks: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1786/1786 [08:53<00:00,  3.35it/s]
Evaluating results:  74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                         | 1324/1786 [03:07<01:05,  7.06it/s]
Traceback (most recent call last):
  File "/Users/sourish/Projects/suadd-2023-semantic-segmentation-starter-kit/local_evaluation.py", line 100, in <module>
    evaluate(LocalEvalConfig)
  File "/Users/sourish/Projects/suadd-2023-semantic-segmentation-starter-kit/local_evaluation.py", line 76, in evaluate
    all_metrics[fname] = calculate_metrics(semantic_annotation, semantic_prediction)
  File "/Users/sourish/Projects/suadd-2023-semantic-segmentation-starter-kit/local_evaluation.py", line 38, in calculate_metrics
    mean_iou_score  = mean_iou(semantic_annotation, semantic_prediction)
  File "/Users/sourish/Projects/suadd-2023-semantic-segmentation-starter-kit/local_evaluation.py", line 28, in mean_iou
    numer = np.sum(class_annotation & class_prediction, axis=(0,1))
ValueError: operands could not be broadcast together with shapes (2250,1550) (2200,1550)

This is using the default random model.

sourishg has not provided any information yet.