Loading

Tree Segmentation

Exploring Augmentations For Beginners

A notebook for beginners to get started with data augmentation

jinoooooooooo

This notebook will walk-through the albumentations library for data augmentation and how to get started for improving the quality of models you can build



Have you ever been at a point where you have an amazing idea that you could implement with your model , so you put on that headphones and start browsing the internet for relevant images... But uhhh there's not much of data that fits your need to start with 😔

But but ... the start of art networks all used thousands and thousands of images... What am I gonna do now ? 😢

Data augmentations to the rescue 🥏

So what exactly is data augmentation and why is it so popular?

Data Augmentation is a very powerful way of increasing your data by NOT copy pasting it but generate images through some special operations to trick the neural network that they are different images .

Refer this link for more examples and explanations - https://albumentations.ai/docs/

In this notebook, we will use the Albumentations library which is one of the most flexible libraries out there with plenty of techniques to increase data.

Y'all ready? 😋



In [1]:
!pip install aicrowd-cli

%load_ext aicrowd.magic
Collecting aicrowd-cli
  Downloading aicrowd_cli-0.1.8-py3-none-any.whl (43 kB)
     |████████████████████████████████| 43 kB 1.3 MB/s 
Collecting requests-toolbelt<1,>=0.9.1
  Downloading requests_toolbelt-0.9.1-py2.py3-none-any.whl (54 kB)
     |████████████████████████████████| 54 kB 2.0 MB/s 
Requirement already satisfied: toml<1,>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (0.10.2)
Collecting tqdm<5,>=4.56.0
  Downloading tqdm-4.62.0-py2.py3-none-any.whl (76 kB)
     |████████████████████████████████| 76 kB 5.0 MB/s 
Collecting requests<3,>=2.25.1
  Downloading requests-2.26.0-py2.py3-none-any.whl (62 kB)
     |████████████████████████████████| 62 kB 1.0 MB/s 
Collecting rich<11,>=10.0.0
  Downloading rich-10.6.0-py3-none-any.whl (208 kB)
     |████████████████████████████████| 208 kB 15.1 MB/s 
Collecting GitPython==3.1.18
  Downloading GitPython-3.1.18-py3-none-any.whl (170 kB)
     |████████████████████████████████| 170 kB 17.4 MB/s 
Requirement already satisfied: click<8,>=7.1.2 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (7.1.2)
Collecting gitdb<5,>=4.0.1
  Downloading gitdb-4.0.7-py3-none-any.whl (63 kB)
     |████████████████████████████████| 63 kB 2.2 MB/s 
Requirement already satisfied: typing-extensions>=3.7.4.0 in /usr/local/lib/python3.7/dist-packages (from GitPython==3.1.18->aicrowd-cli) (3.7.4.3)
Collecting smmap<5,>=3.0.1
  Downloading smmap-4.0.0-py2.py3-none-any.whl (24 kB)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2.10)
Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2.0.2)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2021.5.30)
Collecting commonmark<0.10.0,>=0.9.0
  Downloading commonmark-0.9.1-py2.py3-none-any.whl (51 kB)
     |████████████████████████████████| 51 kB 7.8 MB/s 
Collecting colorama<0.5.0,>=0.4.0
  Downloading colorama-0.4.4-py2.py3-none-any.whl (16 kB)
Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /usr/local/lib/python3.7/dist-packages (from rich<11,>=10.0.0->aicrowd-cli) (2.6.1)
Installing collected packages: smmap, requests, gitdb, commonmark, colorama, tqdm, rich, requests-toolbelt, GitPython, aicrowd-cli
  Attempting uninstall: requests
    Found existing installation: requests 2.23.0
    Uninstalling requests-2.23.0:
      Successfully uninstalled requests-2.23.0
  Attempting uninstall: tqdm
    Found existing installation: tqdm 4.41.1
    Uninstalling tqdm-4.41.1:
      Successfully uninstalled tqdm-4.41.1
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
google-colab 1.0.0 requires requests~=2.23.0, but you have requests 2.26.0 which is incompatible.
datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.
Successfully installed GitPython-3.1.18 aicrowd-cli-0.1.8 colorama-0.4.4 commonmark-0.9.1 gitdb-4.0.7 requests-2.26.0 requests-toolbelt-0.9.1 rich-10.6.0 smmap-4.0.0 tqdm-4.62.0
In [2]:
%aicrowd login
Please login here: https://api.aicrowd.com/auth/KEkP77oL1fq_RzUHqtGAXGSS81nmQdS4P8nwk6_Epus
API Key valid
Saved API Key successfully!
In [3]:
!rm -rf data
!mkdir data
%aicrowd ds dl -c tree-segmentation -o data
In [4]:
!unzip data/train.zip -d data/train > /dev/null
!unzip data/test.zip -d data/test > /dev/null
In [5]:
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import numpy as np
import cv2
import matplotlib.pyplot as plt
from tqdm import tqdm
import shutil
import copy
import random
In [6]:
TRAIN_DIR = '/content/data/train'
os.listdir(TRAIN_DIR)
Out[6]:
['image', 'segmentation']
In [7]:
len(os.listdir('/content/data/train/image')), len(os.listdir('/content/data/train/segmentation'))
Out[7]:
(5000, 5000)
In [8]:
x_train_dir = os.path.join(TRAIN_DIR + '/image')
y_train_dir = os.path.join(TRAIN_DIR + '/segmentation')

THE VISUALIZE FUNCTION 📷

This function will help us visualize the before and after effects of using augmentations

In [9]:
def visualize(**images):
  n = len(images)
  plt.figure(figsize = (10,10))
  for i, (name, image) in enumerate(images.items()):
    plt.subplot(1, n, i + 1)
    plt.title(' '.join(name.split('_')).title())
    plt.imshow(image)
  plt.show()

LOADING THE DATA 🖨️

In [10]:
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
import cv2
from natsort import natsorted
from PIL import Image
In [11]:
class TreeSegmentationDataset(Dataset):
    def __init__(self, img_directory=None, label_directory=None, train=True, augmentation = None, preprocessing = None):
        

        self.img_directory = img_directory
        self.label_directory = label_directory  

        self.augmentation = augmentation        

        # If the image direcotry is valid      
        if img_directory != None:
          self.img_list = natsorted(os.listdir(img_directory))
          self.label_list = natsorted(os.listdir(label_directory))

        self.train = train

    def __len__(self):
        return len(self.img_list)

    def __getitem__(self, idx):

        image = cv2.imread(os.path.join(self.img_directory, self.img_list[idx]))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        if self.train == True:

          mask = cv2.imread(os.path.join(self.label_directory, self.label_list[idx]))

          if self.augmentation:
            sample = self.augmentation(image = image, mask = mask)
            image, mask = sample['image'], sample['mask']

          return image, mask
        
        else:
          return image

This is how our current mask and images look like 😮

In [17]:
dataset = TreeSegmentationDataset(x_train_dir, y_train_dir)

image, mask = dataset[10]
visualize(
    image = image, 
    tree_mask = mask,
)

DATA AUGMENTATION

In [13]:
! pip install albumentations==0.4.6
Collecting albumentations==0.4.6
  Downloading albumentations-0.4.6.tar.gz (117 kB)
     |████████████████████████████████| 117 kB 9.1 MB/s 
Requirement already satisfied: numpy>=1.11.1 in /usr/local/lib/python3.7/dist-packages (from albumentations==0.4.6) (1.19.5)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from albumentations==0.4.6) (1.4.1)
Collecting imgaug>=0.4.0
  Downloading imgaug-0.4.0-py2.py3-none-any.whl (948 kB)
     |████████████████████████████████| 948 kB 14.7 MB/s 
Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/dist-packages (from albumentations==0.4.6) (3.13)
Requirement already satisfied: opencv-python>=4.1.1 in /usr/local/lib/python3.7/dist-packages (from albumentations==0.4.6) (4.1.2.30)
Requirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (from imgaug>=0.4.0->albumentations==0.4.6) (7.1.2)
Requirement already satisfied: scikit-image>=0.14.2 in /usr/local/lib/python3.7/dist-packages (from imgaug>=0.4.0->albumentations==0.4.6) (0.16.2)
Requirement already satisfied: imageio in /usr/local/lib/python3.7/dist-packages (from imgaug>=0.4.0->albumentations==0.4.6) (2.4.1)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from imgaug>=0.4.0->albumentations==0.4.6) (3.2.2)
Requirement already satisfied: Shapely in /usr/local/lib/python3.7/dist-packages (from imgaug>=0.4.0->albumentations==0.4.6) (1.7.1)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from imgaug>=0.4.0->albumentations==0.4.6) (1.15.0)
Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.14.2->imgaug>=0.4.0->albumentations==0.4.6) (2.5.1)
Requirement already satisfied: PyWavelets>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.14.2->imgaug>=0.4.0->albumentations==0.4.6) (1.1.1)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug>=0.4.0->albumentations==0.4.6) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug>=0.4.0->albumentations==0.4.6) (1.3.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug>=0.4.0->albumentations==0.4.6) (2.4.7)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug>=0.4.0->albumentations==0.4.6) (2.8.1)
Requirement already satisfied: decorator<5,>=4.3 in /usr/local/lib/python3.7/dist-packages (from networkx>=2.0->scikit-image>=0.14.2->imgaug>=0.4.0->albumentations==0.4.6) (4.4.2)
Building wheels for collected packages: albumentations
  Building wheel for albumentations (setup.py) ... done
  Created wheel for albumentations: filename=albumentations-0.4.6-py3-none-any.whl size=65173 sha256=4a825acce363d9b4b1dec125df7c77d5a1f4589127165dd1a9c4d5b3d61850bf
  Stored in directory: /root/.cache/pip/wheels/cf/34/0f/cb2a5f93561a181a4bcc84847ad6aaceea8b5a3127469616cc
Successfully built albumentations
Installing collected packages: imgaug, albumentations
  Attempting uninstall: imgaug
    Found existing installation: imgaug 0.2.9
    Uninstalling imgaug-0.2.9:
      Successfully uninstalled imgaug-0.2.9
  Attempting uninstall: albumentations
    Found existing installation: albumentations 0.1.12
    Uninstalling albumentations-0.1.12:
      Successfully uninstalled albumentations-0.1.12
Successfully installed albumentations-0.4.6 imgaug-0.4.0
In [14]:
import albumentations as albu

This is where we start defining our augmentations 🤩

In [15]:
def get_training_augmentation():
    train_transform = [

        albu.HorizontalFlip(p=0.5), # horizontal flips with 50% probability

        albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0), #scaling and rotation both

        albu.PadIfNeeded(min_height=320, min_width=320, always_apply=True, border_mode=0), #padding the images
        albu.RandomCrop(height=320, width=320, always_apply=True), #randomly cropping the images

        albu.IAAAdditiveGaussianNoise(p=0.2), # adding some gaussian noise with 20% probability

        #the one of block helps us to apply any one of the operations inside the block with a given probability
        albu.OneOf(
            [
                #some color transformations
                albu.CLAHE(p=1),
                albu.RandomBrightness(p=1),
                albu.RandomGamma(p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                # image blurring
                albu.IAASharpen(p=1),
                albu.Blur(blur_limit=3, p=1),
                albu.MotionBlur(blur_limit=3, p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
               #changing the hue and saturation values
                albu.RandomContrast(p=1),
                albu.HueSaturationValue(p=1),
            ],
            p=0.9,
        ),
    ]
    return albu.Compose(train_transform)

OUR NEW IMAGES 👻

In [18]:
augmented_dataset = TreeSegmentationDataset(x_train_dir, y_train_dir, augmentation = get_training_augmentation())

for i in range(5): #visualize any 5 images and their mask
  image, mask = augmented_dataset[1]
  visualize(image = image, mask = mask)

Insane right? I hope this will help you get started with using augmentations and I'll encourage you to tune those parameters and try out some more cool augmentations and let me know how it went 😋


Comments

sean_benhur
Over 3 years ago

Nice, but when I use your code and try to create a dataset, my dataset size is (torch.Size([4, 512, 512, 3]), torch.Size([4, 512, 512, 3])), this but it should be (torch.Size([4, 3, 512, 512]), torch.Size([4, 512, 512])), How to fix this!?

jinoooooooooo
Over 3 years ago

Hi sean benhur, glad you liked it . Now to visualize the images , i have not changed the order of dimensions . But to continue building the model in Pytorch, you need to change the order of dimensions like this (channels, height, width) For this you can try this small block of code.

def to_tensor(x, **kwargs): return x.transpose(2, 0, 1).astype(‘float32’)

You must login before you can post a comment.

Execute