Loading

IIT-M RL-ASSIGNMENT-2-TAXI

Solution for submission 132092

A detailed solution for submission 132092 submitted for challenge IIT-M RL-ASSIGNMENT-2-TAXI

Mizhaan

What is the notebook about?

Problem - Taxi Environment Algorithms

This problem deals with a taxi environment and stochastic actions. The tasks you have to do are:

  • Implement Policy Iteration
  • Implement Modified Policy Iteration
  • Implement Value Iteration
  • Implement Gauss Seidel Value Iteration
  • Visualize the results
  • Explain the results

How to use this notebook? 📝

  • This is a shared template and any edits you make here will not be saved.You should make a copy in your own drive. Click the "File" menu (top-left), then "Save a Copy in Drive". You will be working in your copy however you like.

  • Update the config parameters. You can define the common variables here

Variable Description
AICROWD_DATASET_PATH Path to the file containing test data. This should be an absolute path.
AICROWD_RESULTS_DIR Path to write the output to.
AICROWD_ASSETS_DIR In case your notebook needs additional files (like model weights, etc.,), you can add them to a directory and specify the path to the directory here (please specify relative path). The contents of this directory will be sent to AIcrowd for evaluation.
AICROWD_API_KEY In order to submit your code to AIcrowd, you need to provide your account's API key. This key is available at https://www.aicrowd.com/participants/me

Setup AIcrowd Utilities 🛠

We use this to bundle the files for submission and create a submission on AIcrowd. Do not edit this block.

In [2]:
!pip install aicrowd-cli > /dev/null
ERROR: google-colab 1.0.0 has requirement requests~=2.23.0, but you'll have requests 2.25.1 which is incompatible.
ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.

AIcrowd Runtime Configuration 🧷

Get login API key from https://www.aicrowd.com/participants/me

In [3]:
import os

AICROWD_DATASET_PATH = os.getenv("DATASET_PATH", os.getcwd()+"/13d77bb0-b325-4e95-a03b-833eb6694acd_a2_taxi_inputs.zip")
AICROWD_RESULTS_DIR = os.getenv("OUTPUTS_DIR", "results")
In [ ]:

API Key valid
Saved API Key successfully!
In [ ]:
!unzip $AICROWD_DATASET_PATH
In [ ]:
DATASET_DIR = 'inputs/'

Taxi Environment

Read the environment to understand the functions, but do not edit anything

In [ ]:
import numpy as np

class TaxiEnv_HW2:
    def __init__(self, states, actions, probabilities, rewards, initial_policy):
        self.possible_states = states
        self._possible_actions = {st: ac for st, ac in zip(states, actions)}
        self._ride_probabilities = {st: pr for st, pr in zip(states, probabilities)}
        self._ride_rewards = {st: rw for st, rw in zip(states, rewards)}
        self.initial_policy = initial_policy
        self._verify()

    def _check_state(self, state):
        assert state in self.possible_states, "State %s is not a valid state" % state

    def _verify(self):
        """ 
        Verify that data conditions are met:
        Number of actions matches shape of next state and actions
        Every probability distribution adds up to 1 
        """
        ns = len(self.possible_states)
        for state in self.possible_states:
            ac = self._possible_actions[state]
            na = len(ac)

            rp = self._ride_probabilities[state]
            assert np.all(rp.shape == (na, ns)), "Probabilities shape mismatch"
        
            rr = self._ride_rewards[state]
            assert np.all(rr.shape == (na, ns)), "Rewards shape mismatch"

            assert np.allclose(rp.sum(axis=1), 1), "Probabilities don't add up to 1"

    def possible_actions(self, state):
        """ Return all possible actions from a given state """
        self._check_state(state)
        return self._possible_actions[state]

    def ride_probabilities(self, state, action):
        """ 
        Returns all possible ride probabilities from a state for a given action
        For every action a list with the returned with values in the same order as self.possible_states
        """
        actions = self.possible_actions(state)
        ac_idx = actions.index(action)
        return self._ride_probabilities[state][ac_idx]

    def ride_rewards(self, state, action):
        actions = self.possible_actions(state)
        ac_idx = actions.index(action)
        return self._ride_rewards[state][ac_idx]

Example of Environment usage

In [ ]:
def check_taxienv():
    # These are the values as used in the pdf, but they may be changed during submission, so do not hardcode anything

    states = ['A', 'B', 'C']

    actions = [['1','2','3'], ['1','2'], ['1','2','3']]

    probs = [np.array([[1/2,  1/4,  1/4],
                    [1/16, 3/4,  3/16],
                    [1/4,  1/8,  5/8]]),

            np.array([[1/2,   0,     1/2],
                    [1/16,  7/8,  1/16]]),

            np.array([[1/4,  1/4,  1/2],
                    [1/8,  3/4,  1/8],
                    [3/4,  1/16, 3/16]]),]

    rewards = [np.array([[10,  4,  8],
                        [ 8,  2,  4],
                        [ 4,  6,  4]]),

            np.array([[14,  0, 18],
                        [ 8, 16,  8]]),

            np.array([[10,  2,  8],
                        [6,   4,  2],
                        [4,   0,  8]]),]
    initial_policy = {'A': '1', 'B': '1', 'C': '1'}

    env = TaxiEnv_HW2(states, actions, probs, rewards, initial_policy)
    print("All possible states", env.possible_states)
    print("All possible actions from state B", env.possible_actions('B'))
    print("Ride probabilities from state A with action 2", env.ride_probabilities('A', '2'))
    print("Ride rewards from state C with action 3", env.ride_rewards('C', '3'))

    base_kwargs = {"states": states, "actions": actions, 
                "probabilities": probs, "rewards": rewards,
                "initial_policy": initial_policy}
    return base_kwargs

base_kwargs = check_taxienv()
env = TaxiEnv_HW2(**base_kwargs)

Task 1 - Policy Iteration

Run policy iteration on the environment and generate the policy and expected reward

In [ ]:
# 1.1 Policy Iteration
def policy_iteration(taxienv, gamma):
    # A list of all the states
    states = taxienv.possible_states
    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    ## Begin code here
    
    value_grids = []
    policies = []
    
    tol = 1e-8
    
    while True:
    
        # Step 1 : Policy evaluation
        while True:
            # Values of J in previous iteration
            J_old = values.copy()
            delta = 0

            for s in states:
                # given action from state 's'
                a = policy[s]
                J_star = float('-inf')

                probs = taxienv.ride_probabilities(s,a)
                rews  = taxienv.ride_rewards(s,a)

                J_exp = 0

                # Calculating expected cost over next states for a given action
                for i in range(len(states)):
                    J_exp += probs[i]*(rews[i] + gamma*J_old[states[i]])

                delta = max(delta,np.abs(J_exp-J_old[s]))
                
                values[s] = J_exp
                
            if delta < tol:
                break
        
        # Saving value grid and policies after every evaluation
        value_grids.append(values.copy())
        policies.append(policy.copy())
        
        # Step 2 : Policy Improvement
        J_old = values.copy()

        for s in states:
            J_star = float('-inf')

            # improvement
            for a in taxienv.possible_actions(s):
                
                probs = taxienv.ride_probabilities(s,a)
                rews  = taxienv.ride_rewards(s,a)
                
                J_exp = 0

                # evaluation E[J(x1,x2)]
                for i in range(len(states)):
                    J_exp += probs[i]*(rews[i] + gamma*J_old.get(states[i]))

                # argmax
                if J_exp > J_star:
                    J_star = J_exp
                    a_star = a
            
            policy[s] = a_star
                

        # Break from main loop if policy converges
        if policies[-1] == policy:
            break
                
    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf

    
    # Put your extra information needed for plots etc in this dictionary
    extra_info = {
        "Values" : value_grids,
        "Policy": policies
    }

    ## Do not edit below this line

    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 2 - Policy Iteration for multiple values of gamma

Ideally this code should run as is

In [ ]:
# 1.2 Policy Iteration with different values of gamma
def run_policy_iteration(env):
    gamma_values = np.arange(5, 100, 5)/100
    results, extra_info = {}, {}
    for gamma in gamma_values:
        results[gamma], extra_info[gamma] = policy_iteration(env, gamma)
    return results, extra_info

results_T2, extra_info_T2 = run_policy_iteration(env)

Task 3 - Modifed Policy Iteration

Implement modified policy iteration (where Value iteration is done for fixed m number of steps)

In [ ]:
# 1.3 Modified Policy Iteration
def modified_policy_iteration(taxienv, gamma, m):
    # A list of all the states
    states = taxienv.possible_states
    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    ## Begin code here
    
    value_grids = []
    policies = []
    
    while True:
    
        # Step 1 : Policy evaluation (fixed m-iterations)
        for i in range(m):
            # Values of J in previous iteration
            J_old = values.copy()

            for s in states:
                # given action from state 's'
                a = policy[s]
                J_star = float('-inf')

                probs = taxienv.ride_probabilities(s,a)
                rews  = taxienv.ride_rewards(s,a)

                J_exp = 0

                # Calculating expected cost over next states for a given action
                for i in range(len(states)):
                    J_exp += probs[i]*(rews[i] + gamma*J_old[states[i]])
                
                values[s] = J_exp
        
        # Saving value grid and policies after every evaluation
        value_grids.append(values.copy())
        policies.append(policy.copy())
        
        # Step 2 : Policy Improvement
        J_old = values.copy()

        for s in states:
            J_star = float('-inf')

            # improvement
            for a in taxienv.possible_actions(s):
                
                probs = taxienv.ride_probabilities(s,a)
                rews  = taxienv.ride_rewards(s,a)
                
                J_exp = 0

                # evaluation E[J(x1,x2)]
                for i in range(len(states)):
                    J_exp += probs[i]*(rews[i] + gamma*J_old.get(states[i]))

                # argmax
                if J_exp > J_star:
                    J_star = J_exp
                    a_star = a
            
            policy[s] = a_star
                

        # Break from main loop if policy converges
        if policies[-1] == policy:
            break

    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf

    
    # Put your extra information needed for plots etc in this dictionary
    extra_info = {
        "Values" : value_grids,
        "Policy": policies
    }

    ## Do not edit below this line


    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 4 Modified policy iteration for multiple values of m

Ideally this code should run as is

In [ ]:
def run_modified_policy_iteration(env):
    m_values = np.arange(1, 15)
    gamma = 0.9
    results, extra_info = {}, {}
    for m in m_values:
        results[m], extra_info[m] = modified_policy_iteration(env, gamma, m)
    return results, extra_info

results_T4, extra_info_T4 = run_modified_policy_iteration(env)

Task 5 Value Iteration

Implement value iteration and find the policy and expected rewards

In [ ]:
# 1.4 Value Iteration
def value_iteration(taxienv, gamma):
    # A list of all the states
    states = taxienv.possible_states
    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    ## Begin code here
    value_grids = [values.copy()]
    policies = [policy.copy()]
    
    tol = 1e-8
    
    while True:
        J_old = values.copy()
        delta = 0

        for s in states:
            J_star = float('-inf')

            # improvement
            for a in taxienv.possible_actions(s):
                
                probs = taxienv.ride_probabilities(s,a)
                rews  = taxienv.ride_rewards(s,a)
                
                J_exp = 0

                # evaluation E[J(x1,x2)]
                for i in range(len(states)):
                    J_exp += probs[i]*(rews[i] + gamma*J_old[states[i]])

                # taking max and argmax
                if J_exp > J_star:
                    J_star = J_exp
                    a_star = a
                    
            delta = max(delta,np.abs(J_star-J_old[s])) 
            
            values[s] = J_star
            policy[s] = a_star
        
        # Saving value grid and policies after every iteration
        value_grids.append(values.copy())
        policies.append(policy.copy())
        
        if delta < tol:
            break
        
        

    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf


    # Put your extra information needed for plots etc in this dictionary
    extra_info = {
        "Values" : value_grids,
        "Policy": policies
    }

    ## Do not edit below this line

    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 6 Value Iteration with multiple values of gamma

Ideally this code should run as is

In [ ]:
def run_value_iteration(env):
    gamma_values = np.arange(5, 100, 5)/100
    results = {}
    results, extra_info = {}, {}
    for gamma in gamma_values:
        results[gamma], extra_info[gamma] = value_iteration(env, gamma)
    return results, extra_info
  
results_T6, extra_info_T6 = run_value_iteration(env)

Task 7 Gauss Seidel Value Iteration

Implement Gauss Seidel Value Iteration

In [ ]:
# 1.4 Gauss Seidel Value Iteration
def gauss_seidel_value_iteration(taxienv, gamma):
    # A list of all the states
    # For Gauss Seidel Value Iteration - iterate through the values in the same order
    states = taxienv.possible_states

    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    # Hints - 
    # Do not hardcode anything
    # For Gauss Seidel Value Iteration - iterate through the values in the same order as taxienv.possible_states
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf

    ## Begin code here
    value_grids = [values.copy()]
    policies = [policy.copy()]
    
    tol = 1e-8
    
    while True:
        delta = 0

        for s in states:
            j = values[s]
            J_star = float('-inf')

            # improvement
            for a in taxienv.possible_actions(s):
                
                probs = taxienv.ride_probabilities(s,a)
                rews  = taxienv.ride_rewards(s,a)

                # evaluation E[J(x1,x2)]
                J_exp = 0
                
                for i in range(len(states)):
                    J_exp += probs[i]*(rews[i] + gamma*values[states[i]])

                # taking max and argmax
                if J_exp > J_star:
                    J_star = J_exp
                    a_star = a
                    
            delta = max(delta,np.abs(J_star-j)) 
            
            values[s] = J_star
            policy[s] = a_star
        
        # Saving value grid and policies after every iteration
        value_grids.append(values.copy())
        policies.append(policy.copy())
        
        if delta < tol:
            break
        
        

    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf


    # Put your extra information needed for plots etc in this dictionary
    extra_info = {
        "Values" : value_grids,
        "Policy": policies
    }

    ## Do not edit below this line

    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 8 Gauss Seidel Value Iteration with multiple values of gamma

Ideally this code should run as is

In [ ]:
def run_gauss_seidel_value_iteration(env):
    gamma_values = np.arange(5, 100, 5)/100
    results = {}
    results, extra_info = {}, {}
    for gamma in gamma_values:
        results[gamma], extra_info[gamma] = gauss_seidel_value_iteration(env, gamma)
    return results, extra_info

results_T8, extra_info_T8 = run_gauss_seidel_value_iteration(env)

Generate Results ✅

In [ ]:
# Do not edit this cell
def get_results(kwargs):

    taxienv = TaxiEnv_HW2(**kwargs)

    policy_iteration_results = run_policy_iteration(taxienv)[0]
    modified_policy_iteration_results = run_modified_policy_iteration(taxienv)[0]
    value_iteration_results = run_value_iteration(taxienv)[0]
    gs_vi_results = run_gauss_seidel_value_iteration(taxienv)[0]

    final_results = {}
    final_results["policy_iteration"] = policy_iteration_results
    final_results["modifed_policy_iteration"] = modified_policy_iteration_results
    final_results["value_iteration"] = value_iteration_results
    final_results["gauss_seidel_iteration"] = gs_vi_results

    return final_results
In [ ]:
# Do not edit this cell, generate results with it as is
if not os.path.exists(AICROWD_RESULTS_DIR):
    os.mkdir(AICROWD_RESULTS_DIR)

for params_file in os.listdir(DATASET_DIR):
  kwargs = np.load(os.path.join(DATASET_DIR, params_file), allow_pickle=True).item()
  results = get_results(kwargs)
  idx = params_file.split('_')[-1][:-4]
  np.save(os.path.join(AICROWD_RESULTS_DIR, 'results_' + idx), results)

Check your local score

This score is not your final score, and it doesn't use the marks weightages. This is only for your reference of how arrays are matched and with what tolerance.

In [ ]:
# Check your score on the given test cases (There are more private test cases not provided)
target_folder = 'targets'
result_folder = AICROWD_RESULTS_DIR

def check_algo_match(results, targets):
    param_matches = []
    for k in results:
        param_results = results[k]
        param_targets = targets[k]
        policy_match = param_results['Policy'] == param_targets['Policy']
        rv = [v for k, v in param_results['Expected Reward'].items()]
        tv = [v for k, v in param_targets['Expected Reward'].items()]
        rewards_match = np.allclose(rv, tv, rtol=3)
        equal = rewards_match and policy_match
        param_matches.append(equal)
    return np.mean(param_matches)

def check_score(target_folder, result_folder):
    match = []
    for out_file in os.listdir(result_folder):
        res_file = os.path.join(result_folder, out_file)
        results = np.load(res_file, allow_pickle=True).item()
        idx = out_file.split('_')[-1][:-4]  # Extract the file number
        target_file = os.path.join(target_folder, f"targets_{idx}.npy")
        targets = np.load(target_file, allow_pickle=True).item()
        algo_match = []
        for k in targets:
            algo_results = results[k]
            algo_targets = targets[k]
            algo_match.append(check_algo_match(algo_results, algo_targets))
        match.append(np.mean(algo_match))
    return np.mean(match)

if os.path.exists(target_folder):
    print("Shared data Score (normalized to 1):", check_score(target_folder, result_folder))

Visualize results of Policy Iteration with multiple values of gamma

Add code to visualize the results

In [ ]:
## Visualize policy iteration with multiple values of gamma

Subjective questions

1.a How are values of $\gamma$ affecting results of policy iteration

Modify this cell/add code for your answer.

In [ ]:
import pandas as pd

gamma_values = np.arange(5, 100, 5)/100

rews = []
pols = []
for gamma in gamma_values:
    rews.append(results_T2[gamma]['Expected Reward'])
    pols.append(results_T2[gamma]['Policy'])

df_rews = pd.DataFrame(rews)
df_rews.insert(0, "gamma", gamma_values, True)

df_pols = pd.DataFrame(pols)
df_pols.insert(0, "gamma", gamma_values, True)

print('Values for each gamma :')
print(df_rews)
print()
print('Policy for each gamma :')
print(df_pols)

As one can see that the values of our expected reward increase with higher values of $\gamma$. This is obvious as a smaller discounted factor has a more short-sighted or short-term reward and vice-versa.

Regarding the policies, for smaller values of $\gamma$ we get a more greedy policy which emphasizes more on the single-stage reward, while a larger values of $\gamma$ towards 1 gives us a policy that is better in the long run.

1.b For modified policy itetaration, do you find any improvement if you choose m=10.

Explain your answer

In [ ]:
m_values = np.arange(1, 15)

rews = []
pols = []
n = []
for m in m_values:
    rews.append(results_T4[m]['Expected Reward'])
    pols.append(results_T4[m]['Policy'])
    n.append(len(extra_info_T4[m]['Policy']))

df_rews = pd.DataFrame(rews)
df_rews.insert(0, "m", m_values, True)
df_rews.insert(len(df_rews.columns), "iterations", n, True)

df_pols = pd.DataFrame(pols)
df_pols.insert(0, "m", m_values, True)
df_pols.insert(len(df_pols.columns), "iterations", n, True)

print('Values for each m :')
print(df_rews)
print('\nPolicy for each m :')
print(df_pols)

As we can see the only thing that differs is the values for each $m$, there is no such improvement using $m=10$ as the final policies are the same (as expected) and the number of outer-loop iterations too.

1.c Compare and contrast the behavior of Value Iteration and Gauss Seidel Value Iteraton

Add code/markdown as required

In [ ]:
gamma = 0.9

df_VI = pd.DataFrame(extra_info_T6[gamma]['Values'])

df_GS = pd.DataFrame(extra_info_T8[gamma]['Values'])

print('Iterate Values of VI :')
print(df_VI)
print('\nIterate Values of GS :')
print(df_GS)

Here we can see for the same tolerance limit of $10^{-8}$, the Gauss-Seidel variant with 179 iterations terminates before the original value-iteration method with 201 iterations. Also if we see the first 5 iterations, the GS variants has higher values. (i.e. closer to $J^*$)

We shall now plot these values.

In [ ]:
import matplotlib.pyplot as plt
In [ ]:
for s in ['A','B','C']:
    plt.figure(figsize = (8,6))

    y1 = df_VI[s]
    # Plotting J[50]
    plt.plot(list(range(len(y1))), y1, color='red', label = '$J_{VI}$')

    y2 = df_GS[s]
    # Plotting J[50]
    plt.plot(list(range(len(y2))), y2, color='blue', label = '$J_{GS}$')

    plt.xlabel('Iterations (t)',fontsize=14)
    plt.ylabel('$J$'+'($'+ s +'$)',fontsize=14)

    plt.locator_params(axis="both", integer=True, tight=True)
    plt.legend(fontsize=14)
    plt.grid()

    plt.savefig('iterates.png', bbox_inches = 'tight', pad_inches = 0)
    plt.show()

As we can see that the GS values rise up faster proving that its faster at convergence than the VI algorithm.

Submit to AIcrowd 🚀

In [ ]:
!DATASET_PATH=$AICROWD_DATASET_PATH aicrowd notebook submit -c iit-m-rl-assignment-2-taxi -a assets
1083

Comments

You must login before you can post a comment.

Execute