IIT-M RL-ASSIGNMENT-2-TAXI

Solution for submission 132302

A detailed solution for submission 132302 submitted for challenge IIT-M RL-ASSIGNMENT-2-TAXI

Wolfram7

What is the notebook about?ΒΆ

Problem - Taxi Environment AlgorithmsΒΆ

This problem deals with a taxi environment and stochastic actions. The tasks you have to do are:

  • Implement Policy Iteration
  • Implement Modified Policy Iteration
  • Implement Value Iteration
  • Implement Gauss Seidel Value Iteration
  • Visualize the results
  • Explain the results

How to use this notebook? πŸ“ΒΆ

  • This is a shared template and any edits you make here will not be saved.You should make a copy in your own drive. Click the "File" menu (top-left), then "Save a Copy in Drive". You will be working in your copy however you like.

  • Update the config parameters. You can define the common variables here

Variable Description
AICROWD_DATASET_PATH Path to the file containing test data. This should be an absolute path.
AICROWD_RESULTS_DIR Path to write the output to.
AICROWD_ASSETS_DIR In case your notebook needs additional files (like model weights, etc.,), you can add them to a directory and specify the path to the directory here (please specify relative path). The contents of this directory will be sent to AIcrowd for evaluation.
AICROWD_API_KEY In order to submit your code to AIcrowd, you need to provide your account's API key. This key is available at https://www.aicrowd.com/participants/me

Setup AIcrowd Utilities πŸ› ΒΆ

We use this to bundle the files for submission and create a submission on AIcrowd. Do not edit this block.

In [1]:
!pip install aicrowd-cli > /dev/null
ERROR: google-colab 1.0.0 has requirement requests~=2.23.0, but you'll have requests 2.25.1 which is incompatible.
ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.

AIcrowd Runtime Configuration 🧷¢

Get login API key from https://www.aicrowd.com/participants/me

In [2]:
import os

AICROWD_DATASET_PATH = os.getenv("DATASET_PATH", os.getcwd()+"/13d77bb0-b325-4e95-a03b-833eb6694acd_a2_taxi_inputs.zip")
AICROWD_RESULTS_DIR = os.getenv("OUTPUTS_DIR", "results")
In [3]:

API Key valid
Saved API Key successfully!
13d77bb0-b325-4e95-a03b-833eb6694acd_a2_taxi_inputs.zip: 100% 31.2k/31.2k [00:00<00:00, 313kB/s]
In [4]:
!unzip $AICROWD_DATASET_PATH
Archive:  /content/13d77bb0-b325-4e95-a03b-833eb6694acd_a2_taxi_inputs.zip
   creating: inputs/
  inflating: inputs/inputs_base.npy  
  inflating: inputs/inputs_1.npy     
  inflating: inputs/inputs_0.npy     
  inflating: inputs/inputs_2.npy     
   creating: targets/
  inflating: targets/targets_2.npy   
  inflating: targets/targets_0.npy   
  inflating: targets/targets_1.npy   
  inflating: targets/targets_base.npy  
In [5]:
DATASET_DIR = 'inputs/'

Taxi EnvironmentΒΆ

Read the environment to understand the functions, but do not edit anything

In [6]:
import numpy as np

class TaxiEnv_HW2:
    def __init__(self, states, actions, probabilities, rewards, initial_policy):
        self.possible_states = states
        self._possible_actions = {st: ac for st, ac in zip(states, actions)}
        self._ride_probabilities = {st: pr for st, pr in zip(states, probabilities)}
        self._ride_rewards = {st: rw for st, rw in zip(states, rewards)}
        self.initial_policy = initial_policy
        self._verify()

    def _check_state(self, state):
        assert state in self.possible_states, "State %s is not a valid state" % state

    def _verify(self):
        """ 
        Verify that data conditions are met:
        Number of actions matches shape of next state and actions
        Every probability distribution adds up to 1 
        """
        ns = len(self.possible_states)
        for state in self.possible_states:
            ac = self._possible_actions[state]
            na = len(ac)

            rp = self._ride_probabilities[state]
            assert np.all(rp.shape == (na, ns)), "Probabilities shape mismatch"
        
            rr = self._ride_rewards[state]
            assert np.all(rr.shape == (na, ns)), "Rewards shape mismatch"

            assert np.allclose(rp.sum(axis=1), 1), "Probabilities don't add up to 1"

    def possible_actions(self, state):
        """ Return all possible actions from a given state """
        self._check_state(state)
        return self._possible_actions[state]

    def ride_probabilities(self, state, action):
        """ 
        Returns all possible ride probabilities from a state for a given action
        For every action a list with the returned with values in the same order as self.possible_states
        """
        actions = self.possible_actions(state)
        ac_idx = actions.index(action)
        return self._ride_probabilities[state][ac_idx]

    def ride_rewards(self, state, action):
        actions = self.possible_actions(state)
        ac_idx = actions.index(action)
        return self._ride_rewards[state][ac_idx]

Example of Environment usageΒΆ

In [7]:
def check_taxienv():
    # These are the values as used in the pdf, but they may be changed during submission, so do not hardcode anything

    states = ['A', 'B', 'C']

    actions = [['1','2','3'], ['1','2'], ['1','2','3']]

    probs = [np.array([[1/2,  1/4,  1/4],
                    [1/16, 3/4,  3/16],
                    [1/4,  1/8,  5/8]]),

            np.array([[1/2,   0,     1/2],
                    [1/16,  7/8,  1/16]]),

            np.array([[1/4,  1/4,  1/2],
                    [1/8,  3/4,  1/8],
                    [3/4,  1/16, 3/16]]),]

    rewards = [np.array([[10,  4,  8],
                        [ 8,  2,  4],
                        [ 4,  6,  4]]),

            np.array([[14,  0, 18],
                        [ 8, 16,  8]]),

            np.array([[10,  2,  8],
                        [6,   4,  2],
                        [4,   0,  8]]),]
    initial_policy = {'A': '1', 'B': '1', 'C': '1'}

    env = TaxiEnv_HW2(states, actions, probs, rewards, initial_policy)
    print("All possible states", env.possible_states)
    print("All possible actions from state B", env.possible_actions('B'))
    print("Ride probabilities from state A with action 2", env.ride_probabilities('A', '2'))
    print("Ride rewards from state C with action 3", env.ride_rewards('C', '3'))

    base_kwargs = {"states": states, "actions": actions, 
                "probabilities": probs, "rewards": rewards,
                "initial_policy": initial_policy}
    return base_kwargs

base_kwargs = check_taxienv()
env = TaxiEnv_HW2(**base_kwargs)
All possible states ['A', 'B', 'C']
All possible actions from state B ['1', '2']
Ride probabilities from state A with action 2 [0.0625 0.75   0.1875]
Ride rewards from state C with action 3 [4 0 8]

Task 1 - Policy IterationΒΆ

Run policy iteration on the environment and generate the policy and expected reward

In [8]:
# 1.1 Policy Iteration
def policy_iteration(taxienv, gamma):
    # A list of all the states
    states = taxienv.possible_states
    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    ## Begin code here

    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf

    
    # Put your extra information needed for plots etc in this dictionary
    extra_info = {}

    while (1):
      while (1):
        delta = 0
        for state in states:

          j = values[state]
          prob = taxienv.ride_probabilities(state, policy[state])
          stage_reward = taxienv.ride_rewards(state, policy[state])
          total_reward = 0

          ind = 0
          for next_state in states:
            total_reward += prob[ind] * (stage_reward[ind] + gamma*values[next_state])
            ind+=1

          values[state] = total_reward
          delta = max (delta, abs(j - total_reward))

        if delta < 1e-8 :
          break 
      prev_policy = policy.copy()
      for state in states :

          max_total_reward = -2e9

          for action in taxienv.possible_actions(state):

            prob = taxienv.ride_probabilities(state, action)
            stage_reward = taxienv.ride_rewards(state, action)
            total_reward = 0

            ind = 0

            for next_state in states:
              total_reward += prob[ind] * (stage_reward[ind] + gamma*values[next_state])
              ind+=1

            if total_reward > max_total_reward:
              max_total_reward = total_reward
              policy[state] = action

      if prev_policy == policy :
          break 

    ## Do not edit below this line

    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 2 - Policy Iteration for multiple values of gammaΒΆ

Ideally this code should run as is

In [9]:
# 1.2 Policy Iteration with different values of gamma
def run_policy_iteration(env):
    gamma_values = np.arange(5, 100, 5)/100
    results, extra_info = {}, {}
    for gamma in gamma_values:
        results[gamma], extra_info[gamma] = policy_iteration(env, gamma)
    return results, extra_info

results, extra_info = run_policy_iteration(env)
print(results)
{0.05: {'Expected Reward': {'A': 8.511527294546923, 'B': 16.400259909029575, 'C': 7.4988690667106095}, 'Policy': {'A': '1', 'B': '1', 'C': '1'}}, 0.1: {'Expected Reward': {'A': 9.076506149392834, 'B': 16.85636856362452, 'C': 8.050865123980312}, 'Policy': {'A': '1', 'B': '1', 'C': '1'}}, 0.15: {'Expected Reward': {'A': 9.708121492285777, 'B': 17.464503041460713, 'C': 8.669160453984542}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.2: {'Expected Reward': {'A': 10.437030074788021, 'B': 18.482142856612846, 'C': 9.384398496135692}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.25: {'Expected Reward': {'A': 11.274074073456447, 'B': 19.629629628834554, 'C': 10.207407407209406}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.3: {'Expected Reward': {'A': 12.243837242843748, 'B': 20.934065932820292, 'C': 11.162756162382273}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.35: {'Expected Reward': {'A': 13.378714434389575, 'B': 22.43076922849439, 'C': 12.282824024490601}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.4: {'Expected Reward': {'A': 14.722222218062745, 'B': 24.16666666169111, 'C': 13.611111109108625}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.45: {'Expected Reward': {'A': 16.334131265172196, 'B': 26.205533591380167, 'C': 15.20737070397659}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.5: {'Expected Reward': {'A': 18.29870129504681, 'B': 28.636363632167495, 'C': 17.155844153726775}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}, 0.55: {'Expected Reward': {'A': 20.789988634661945, 'B': 31.607396695666196, 'C': 19.830725213847188}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}, 0.6: {'Expected Reward': {'A': 24.025686438308284, 'B': 35.32772363825764, 'C': 23.458813102392277}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}, 0.65: {'Expected Reward': {'A': 28.276692060109887, 'B': 40.096280573890574, 'C': 28.129978785480258}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}, 0.7: {'Expected Reward': {'A': 34.06193076627213, 'B': 46.43541615340033, 'C': 34.36604101044906}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}, 0.75: {'Expected Reward': {'A': 42.31741138120016, 'B': 55.28505390685269, 'C': 43.10631739475281}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}, 0.8: {'Expected Reward': {'A': 55.079365046134924, 'B': 68.55820102458796, 'C': 56.26984124288862}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}, 0.85: {'Expected Reward': {'A': 77.24651210119615, 'B': 90.81170062152418, 'C': 78.43345572723322}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}, 0.9: {'Expected Reward': {'A': 121.65347105207364, 'B': 135.30627545205246, 'C': 122.83690301136426}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}, 0.95: {'Expected Reward': {'A': 255.02290826558783, 'B': 268.7646183427653, 'C': 256.2028492762011}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}}

Task 3 - Modifed Policy IterationΒΆ

Implement modified policy iteration (where Value iteration is done for fixed m number of steps)

In [10]:
# 1.3 Modified Policy Iteration
def modified_policy_iteration(taxienv, gamma, m):
    # A list of all the states
    states = taxienv.possible_states
    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    ## Begin code here

    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf

    
    # Put your extra information needed for plots etc in this dictionary
    extra_info = {}

    cnt = 0
    while (1):

      cnt+=1

      H = {s: 0 for s in states}

      for k in range(m):
        for state in states:

          prob = taxienv.ride_probabilities(state, policy[state])
          stage_reward = taxienv.ride_rewards(state, policy[state])
          total_reward = 0

          ind = 0
          for next_state in states:
            total_reward += prob[ind] * (stage_reward[ind] + gamma*values[next_state])
            ind+=1

          H[state] = total_reward

        values = H.copy()

      prev_policy = policy.copy()
      for state in states :

          max_total_reward = -2e9

          for action in taxienv.possible_actions(state):

            prob = taxienv.ride_probabilities(state, action)
            stage_reward = taxienv.ride_rewards(state, action)
            total_reward = 0

            ind = 0

            for next_state in states:
              total_reward += prob[ind] * (stage_reward[ind] + gamma*values[next_state])
              ind+=1

            if total_reward > max_total_reward:
              max_total_reward = total_reward
              policy[state] = action

      if prev_policy == policy :
          break  
    
    extra_info['No_iterations'] = cnt
    ## Do not edit below this line


    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 4 Modified policy iteration for multiple values of mΒΆ

Ideally this code should run as is

In [11]:
def run_modified_policy_iteration(env):
    m_values = np.arange(1, 15)
    gamma = 0.9
    results, extra_info = {}, {}
    for m in m_values:
        results[m], extra_info[m] = modified_policy_iteration(env, gamma, m)
    return results, extra_info

results, extra_info = run_modified_policy_iteration(env)

Task 5 Value IterationΒΆ

Implement value iteration and find the policy and expected rewards

In [12]:
# 1.4 Value Iteration
def value_iteration(taxienv, gamma):
    # A list of all the states
    states = taxienv.possible_states
    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    ## Begin code here

    # Hints - 
    # Do not hardcode anything
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf


    # Put your extra information needed for plots etc in this dictionary
    extra_info = {}
    cnt = 0

    while (1):

        cnt += 1
        delta = 0
        H = {s : 0 for s in states}

        for state in states :

            max_total_reward = -2e9

            for action in taxienv.possible_actions(state):

              prob = taxienv.ride_probabilities(state, action)
              stage_reward = taxienv.ride_rewards(state, action)
              total_reward = 0

              ind = 0

              for next_state in states:
                total_reward += prob[ind] * (stage_reward[ind] + gamma*values[next_state])
                ind+=1

              if total_reward > max_total_reward:
                max_total_reward = total_reward
                policy[state] = action

            H[state] = max_total_reward
            delta = max (delta, abs(max_total_reward - values[state]) )

        values = H.copy()

        if delta < 1e-8 :
          break

    extra_info['No_iterations'] = cnt

    ## Do not edit below this line

    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 6 Value Iteration with multiple values of gammaΒΆ

Ideally this code should run as is

In [13]:
def run_value_iteration(env):
    gamma_values = np.arange(5, 100, 5)/100
    results = {}
    results, extra_info = {}, {}
    for gamma in gamma_values:
        results[gamma], extra_info[gamma] = value_iteration(env, gamma)
    return results, extra_info
  
results, extra_info = run_value_iteration(env)

Task 7 Gauss Seidel Value IterationΒΆ

Implement Gauss Seidel Value Iteration

In [14]:
# 1.4 Gauss Seidel Value Iteration
def gauss_seidel_value_iteration(taxienv, gamma):
    # A list of all the states
    # For Gauss Seidel Value Iteration - iterate through the values in the same order
    states = taxienv.possible_states

    # Initial values
    values = {s: 0 for s in states}

    # This is a dictionary of states to policies -> e.g {'A': '1', 'B': '2', 'C': '1'}
    policy = taxienv.initial_policy.copy()

    # Hints - 
    # Do not hardcode anything
    # For Gauss Seidel Value Iteration - iterate through the values in the same order as taxienv.possible_states
    # Only the final result is required for the results
    # Put any extra data in "extra_info" dictonary for any plots etc
    # Use the helper functions taxienv.ride_rewards, taxienv.ride_probabilities,  taxienv.possible_actions
    # For terminating condition use the condition exactly mentioned in the pdf

    ## Begin code here
    
    # Put your extra information needed for plots etc in this dictionary
    extra_info = {}
    cnt = 0

    while (1):

        cnt += 1

        delta = 0
        for state in states :

            j = values[state]

            max_total_reward = -2e9

            for action in taxienv.possible_actions(state):

              prob = taxienv.ride_probabilities(state, action)
              stage_reward = taxienv.ride_rewards(state, action)
              total_reward = 0

              ind = 0

              for next_state in states:
                total_reward += prob[ind] * (stage_reward[ind] + gamma*values[next_state])
                ind+=1

              if total_reward > max_total_reward:
                max_total_reward = total_reward
                policy[state] = action

            values[state] = max_total_reward
            delta = max (delta, abs(max_total_reward - j) )

        if delta < 1e-8 :
          break

    extra_info['No_iterations'] = cnt

    ## Do not edit below this line

    # Final results
    return {"Expected Reward": values, "Policy": policy}, extra_info

Task 8 Gauss Seidel Value Iteration with multiple values of gammaΒΆ

Ideally this code should run as is

In [15]:
def run_gauss_seidel_value_iteration(env):
    gamma_values = np.arange(5, 100, 5)/100
    results = {}
    results, extra_info = {}, {}
    for gamma in gamma_values:
        results[gamma], extra_info[gamma] = gauss_seidel_value_iteration(env, gamma)
    return results, extra_info

results, extra_info = run_gauss_seidel_value_iteration(env)

Generate Results βœ…ΒΆ

In [16]:
# Do not edit this cell
def get_results(kwargs):

    taxienv = TaxiEnv_HW2(**kwargs)

    policy_iteration_results = run_policy_iteration(taxienv)[0]
    modified_policy_iteration_results = run_modified_policy_iteration(taxienv)[0]
    value_iteration_results = run_value_iteration(taxienv)[0]
    gs_vi_results = run_gauss_seidel_value_iteration(taxienv)[0]

    final_results = {}
    final_results["policy_iteration"] = policy_iteration_results
    final_results["modifed_policy_iteration"] = modified_policy_iteration_results
    final_results["value_iteration"] = value_iteration_results
    final_results["gauss_seidel_iteration"] = gs_vi_results

    return final_results
In [17]:
# Do not edit this cell, generate results with it as is
if not os.path.exists(AICROWD_RESULTS_DIR):
    os.mkdir(AICROWD_RESULTS_DIR)

for params_file in os.listdir(DATASET_DIR):
  kwargs = np.load(os.path.join(DATASET_DIR, params_file), allow_pickle=True).item()
  results = get_results(kwargs)
  idx = params_file.split('_')[-1][:-4]
  np.save(os.path.join(AICROWD_RESULTS_DIR, 'results_' + idx), results)

Check your local scoreΒΆ

This score is not your final score, and it doesn't use the marks weightages. This is only for your reference of how arrays are matched and with what tolerance.

In [18]:
# Check your score on the given test cases (There are more private test cases not provided)
target_folder = 'targets'
result_folder = AICROWD_RESULTS_DIR

def check_algo_match(results, targets):
    param_matches = []
    for k in results:
        param_results = results[k]
        param_targets = targets[k]
        policy_match = param_results['Policy'] == param_targets['Policy']
        rv = [v for k, v in param_results['Expected Reward'].items()]
        tv = [v for k, v in param_targets['Expected Reward'].items()]
        rewards_match = np.allclose(rv, tv, rtol=3)
        equal = rewards_match and policy_match
        param_matches.append(equal)
    return np.mean(param_matches)

def check_score(target_folder, result_folder):
    match = []
    for out_file in os.listdir(result_folder):
        res_file = os.path.join(result_folder, out_file)
        results = np.load(res_file, allow_pickle=True).item()
        idx = out_file.split('_')[-1][:-4]  # Extract the file number
        target_file = os.path.join(target_folder, f"targets_{idx}.npy")
        targets = np.load(target_file, allow_pickle=True).item()
        algo_match = []
        for k in targets:
            algo_results = results[k]
            algo_targets = targets[k]
            algo_match.append(check_algo_match(algo_results, algo_targets))
        match.append(np.mean(algo_match))
    return np.mean(match)

if os.path.exists(target_folder):
    print("Shared data Score (normalized to 1):", check_score(target_folder, result_folder))
Shared data Score (normalized to 1): 1.0

Visualize results of Policy Iteration with multiple values of gammaΒΆ

Add code to visualize the results

In [19]:
import matplotlib.pyplot as plt


gamma_values = np.arange(5, 100, 5)/100
results, extra_info = {}, {}
for gamma in gamma_values:
    results[gamma], extra_info[gamma] = policy_iteration(env, gamma)

reward_a = np.zeros(19)
reward_b = np.zeros(19)
reward_c = np.zeros(19)
gammas = np.arange(5, 100, 5)/100
for ind in range(len(gammas)):
  reward_a[ind] = results[gammas[ind]]['Expected Reward']['A']
  reward_b[ind] = results[gammas[ind]]['Expected Reward']['B']
  reward_c[ind] = results[gammas[ind]]['Expected Reward']['C']
  print (results[gammas[ind]])
plt.figure(figsize = (12,12))
plt.plot(gammas,reward_a)
plt.plot(gammas,reward_b)
plt.plot(gammas,reward_c)
plt.legend(['A', 'B', 'C'])
plt.title('J vs $\gamma$')
plt.xlabel('$\gamma$')
plt.ylabel('Value Function')
plt.show()
{'Expected Reward': {'A': 8.511527294546923, 'B': 16.400259909029575, 'C': 7.4988690667106095}, 'Policy': {'A': '1', 'B': '1', 'C': '1'}}
{'Expected Reward': {'A': 9.076506149392834, 'B': 16.85636856362452, 'C': 8.050865123980312}, 'Policy': {'A': '1', 'B': '1', 'C': '1'}}
{'Expected Reward': {'A': 9.708121492285777, 'B': 17.464503041460713, 'C': 8.669160453984542}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 10.437030074788021, 'B': 18.482142856612846, 'C': 9.384398496135692}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 11.274074073456447, 'B': 19.629629628834554, 'C': 10.207407407209406}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 12.243837242843748, 'B': 20.934065932820292, 'C': 11.162756162382273}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 13.378714434389575, 'B': 22.43076922849439, 'C': 12.282824024490601}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 14.722222218062745, 'B': 24.16666666169111, 'C': 13.611111109108625}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 16.334131265172196, 'B': 26.205533591380167, 'C': 15.20737070397659}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 18.29870129504681, 'B': 28.636363632167495, 'C': 17.155844153726775}, 'Policy': {'A': '1', 'B': '2', 'C': '1'}}
{'Expected Reward': {'A': 20.789988634661945, 'B': 31.607396695666196, 'C': 19.830725213847188}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 24.025686438308284, 'B': 35.32772363825764, 'C': 23.458813102392277}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 28.276692060109887, 'B': 40.096280573890574, 'C': 28.129978785480258}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 34.06193076627213, 'B': 46.43541615340033, 'C': 34.36604101044906}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 42.31741138120016, 'B': 55.28505390685269, 'C': 43.10631739475281}, 'Policy': {'A': '1', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 55.079365046134924, 'B': 68.55820102458796, 'C': 56.26984124288862}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 77.24651210119615, 'B': 90.81170062152418, 'C': 78.43345572723322}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 121.65347105207364, 'B': 135.30627545205246, 'C': 122.83690301136426}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}
{'Expected Reward': {'A': 255.02290826558783, 'B': 268.7646183427653, 'C': 256.2028492762011}, 'Policy': {'A': '2', 'B': '2', 'C': '2'}}

Subjective questionsΒΆ

1.a How are values of Ξ³ affecting results of policy iterationΒΆ

We know for smaller Ξ³, the later rewards matter less, and we can be greedy so that we can get maximum reward in the current stage.
If we calculate the expected value of the reward of each state and action pair, we get
g(A,1)=5,g(A,2)=2.75,g(A,3)=4.25 g(B,1)=16,g(B,2)=15 g(C,1)=7,g(C,2)=4,g(C,3)=4.5

We can see action 1 has the highest single stage reward for all stages and naturally for lower Ξ³ like 0.05,0.1, action 1 is the optimal action in all states.
With larger gamma , future rewards also start affecting and hence value function increases with increasing Ξ³

Optimal Policies for various Ξ³

Ξ³ A B C
0.05 1 1 1
0.15 1 2 1
0.3 1 2 1
0.55 1 2 2
0.8 2 2 2
0.95 2 2 2

Screenshot from 2021-04-17 13-06-54.png

1.b For modified policy itetaration, do you find any improvement if you choose m=10.ΒΆ

Yes, with larger m , we get a better approximation for JΟ€, hence the final value function is a better estimate compared to smaller m.
With m=5, the expected reward is J5(A)=103.76,J5(B)=117.31,J5(C)=106.62 With m=10, the expected reward is J10(A)=117.55,J10(B)=131.18,J10(C)=119.12

We can see we get a higher value function with m=10

1.c Compare and contrast the behavior of Value Iteration and Gauss Seidel Value IteratonΒΆ

Both Value Iteration and Gauss Seidel Value Iteration converge to the same value in this case.
For the same value of gamma , Gauss Seidel Value Iteration converges in less iterations compared to Value Iteration.There is almost a constant amount of difference in the number of iterations for Ξ³>0.5.

Screenshot from 2021-04-17 13-13-50.png

Submit to AIcrowd πŸš€ΒΆ

In [ ]:
!DATASET_PATH=$AICROWD_DATASET_PATH aicrowd notebook submit -c iit-m-rl-assignment-2-taxi -a assets
1657

Comments

You must login before you can post a comment.

Execute