Global Wheat Challenge 2021
Submit with WILDS
WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities
WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping. It focuses on training robust algorithm. You can try to get you first model trained with the toolbox following the notebook !
Global Wheat Competition 2021 - Starting notebook using the WILDS library¶
- WILDS (https://github.com/p-lambda/wilds) is a PyTorch-based library for distribution shifts. It contains data loaders and evaluation functions for the Global Wheat Competition, as well as some examples of algorithms and models that you can build on.
- The goal of this notebook is to help you get started with using the WILDS library to train and submit your first model!
- Using WILDS is not necessary for participating in the competition. However, you might find a lot of the utilities and infrastructure in the WILDS library useful.
- Before starting, please check in Edit / Notebook settings that "GPU" is selected
Download Aicrowd-cli 📚¶
The Aicrowd CLI enables making submissions directly via the notebook.
!pip install aicrowd-cli
Collecting aicrowd-cli Downloading https://files.pythonhosted.org/packages/a5/8a/fca67e8c1cb1501a9653cd653232bf6fdebbb2393e3de861aad3636a1136/aicrowd_cli-0.1.6-py3-none-any.whl (51kB) |████████████████████████████████| 61kB 8.6MB/s Collecting rich<11,>=10.0.0 Downloading https://files.pythonhosted.org/packages/7b/ff/23056b2b3dfb22bd1400b49639f00945ec320647700c0b288dc29d4ed70a/rich-10.2.0-py3-none-any.whl (203kB) |████████████████████████████████| 204kB 16.5MB/s Collecting gitpython<4,>=3.1.12 Downloading https://files.pythonhosted.org/packages/27/da/6f6224fdfc47dab57881fe20c0d1bc3122be290198ba0bf26a953a045d92/GitPython-3.1.17-py3-none-any.whl (166kB) |████████████████████████████████| 174kB 49.1MB/s Requirement already satisfied: toml<1,>=0.10.2 in /usr/local/lib/python3.7/dist-packages (from aicrowd-cli) (0.10.2) Collecting tqdm<5,>=4.56.0 Downloading https://files.pythonhosted.org/packages/72/8a/34efae5cf9924328a8f34eeb2fdaae14c011462d9f0e3fcded48e1266d1c/tqdm-4.60.0-py2.py3-none-any.whl (75kB) |████████████████████████████████| 81kB 11.0MB/s Collecting requests-toolbelt<1,>=0.9.1 Downloading https://files.pythonhosted.org/packages/60/ef/7681134338fc097acef8d9b2f8abe0458e4d87559c689a8c306d0957ece5/requests_toolbelt-0.9.1-py2.py3-none-any.whl (54kB) |████████████████████████████████| 61kB 8.1MB/s Collecting click<8,>=7.1.2 Downloading https://files.pythonhosted.org/packages/d2/3d/fa76db83bf75c4f8d338c2fd15c8d33fdd7ad23a9b5e57eb6c5de26b430e/click-7.1.2-py2.py3-none-any.whl (82kB) |████████████████████████████████| 92kB 11.3MB/s Collecting requests<3,>=2.25.1 Downloading https://files.pythonhosted.org/packages/29/c1/24814557f1d22c56d50280771a17307e6bf87b70727d975fd6b2ce6b014a/requests-2.25.1-py2.py3-none-any.whl (61kB) |████████████████████████████████| 61kB 9.2MB/s Collecting colorama<0.5.0,>=0.4.0 Downloading https://files.pythonhosted.org/packages/44/98/5b86278fbbf250d239ae0ecb724f8572af1c91f4a11edf4d36a206189440/colorama-0.4.4-py2.py3-none-any.whl Requirement already satisfied: typing-extensions<4.0.0,>=3.7.4; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from rich<11,>=10.0.0->aicrowd-cli) (3.7.4.3) Collecting commonmark<0.10.0,>=0.9.0 Downloading https://files.pythonhosted.org/packages/b1/92/dfd892312d822f36c55366118b95d914e5f16de11044a27cf10a7d71bbbf/commonmark-0.9.1-py2.py3-none-any.whl (51kB) |████████████████████████████████| 51kB 7.5MB/s Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /usr/local/lib/python3.7/dist-packages (from rich<11,>=10.0.0->aicrowd-cli) (2.6.1) Collecting gitdb<5,>=4.0.1 Downloading https://files.pythonhosted.org/packages/ea/e8/f414d1a4f0bbc668ed441f74f44c116d9816833a48bf81d22b697090dba8/gitdb-4.0.7-py3-none-any.whl (63kB) |████████████████████████████████| 71kB 10.6MB/s Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2.10) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.25.1->aicrowd-cli) (2020.12.5) Collecting smmap<5,>=3.0.1 Downloading https://files.pythonhosted.org/packages/68/ee/d540eb5e5996eb81c26ceffac6ee49041d473bc5125f2aa995cf51ec1cf1/smmap-4.0.0-py2.py3-none-any.whl ERROR: google-colab 1.0.0 has requirement requests~=2.23.0, but you'll have requests 2.25.1 which is incompatible. ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible. Installing collected packages: colorama, commonmark, rich, smmap, gitdb, gitpython, tqdm, requests, requests-toolbelt, click, aicrowd-cli Found existing installation: tqdm 4.41.1 Uninstalling tqdm-4.41.1: Successfully uninstalled tqdm-4.41.1 Found existing installation: requests 2.23.0 Uninstalling requests-2.23.0: Successfully uninstalled requests-2.23.0 Found existing installation: click 8.0.0 Uninstalling click-8.0.0: Successfully uninstalled click-8.0.0 Successfully installed aicrowd-cli-0.1.6 click-7.1.2 colorama-0.4.4 commonmark-0.9.1 gitdb-4.0.7 gitpython-3.1.17 requests-2.25.1 requests-toolbelt-0.9.1 rich-10.2.0 smmap-4.0.0 tqdm-4.60.0
### Please enter your API Key from [here](https://www.aicrowd.com/participants/me).
API_KEY = ""
!aicrowd login --api-key $API_KEY
API Key valid Saved API Key successfully!
Download the WILDS library¶
For more detailed installation instructions, please refer to the WILDS documentation.
!pip uninstall torch torchvision torchaudio -y
!pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
!pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu101.html
!git clone https://github.com/p-lambda/wilds/
!cd wilds && git checkout dev && pip install -e .
!pip install transformers
Uninstalling torch-1.8.1+cu101: Successfully uninstalled torch-1.8.1+cu101 Uninstalling torchvision-0.9.1+cu101: Successfully uninstalled torchvision-0.9.1+cu101 WARNING: Skipping torchaudio as it is not installed. Looking in links: https://download.pytorch.org/whl/torch_stable.html Collecting torch==1.7.1+cu101 Downloading https://download.pytorch.org/whl/cu101/torch-1.7.1%2Bcu101-cp37-cp37m-linux_x86_64.whl (735.4MB) |████████████████████████████████| 735.4MB 24kB/s Collecting torchvision==0.8.2+cu101 Downloading https://download.pytorch.org/whl/cu101/torchvision-0.8.2%2Bcu101-cp37-cp37m-linux_x86_64.whl (12.8MB) |████████████████████████████████| 12.8MB 264kB/s Collecting torchaudio==0.7.2 Downloading https://files.pythonhosted.org/packages/37/16/ecdb9eb09ec6b8133d6c9536ea9e49cd13c9b5873c8488b8b765a39028da/torchaudio-0.7.2-cp37-cp37m-manylinux1_x86_64.whl (7.6MB) |████████████████████████████████| 7.6MB 17.8MB/s Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch==1.7.1+cu101) (3.7.4.3) Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from torch==1.7.1+cu101) (1.19.5) Requirement already satisfied: pillow>=4.1.1 in /usr/local/lib/python3.7/dist-packages (from torchvision==0.8.2+cu101) (7.1.2) ERROR: torchtext 0.9.1 has requirement torch==1.8.1, but you'll have torch 1.7.1+cu101 which is incompatible. Installing collected packages: torch, torchvision, torchaudio Successfully installed torch-1.7.1+cu101 torchaudio-0.7.2 torchvision-0.8.2+cu101 Looking in links: https://pytorch-geometric.com/whl/torch-1.7.0+cu101.html Collecting torch-scatter Downloading https://pytorch-geometric.com/whl/torch-1.7.0%2Bcu101/torch_scatter-2.0.6-cp37-cp37m-linux_x86_64.whl (2.8MB) |████████████████████████████████| 2.8MB 11.9MB/s Installing collected packages: torch-scatter Successfully installed torch-scatter-2.0.6 Cloning into 'wilds'... remote: Enumerating objects: 2835, done. remote: Counting objects: 100% (517/517), done. remote: Compressing objects: 100% (119/119), done. remote: Total 2835 (delta 437), reused 435 (delta 396), pack-reused 2318 Receiving objects: 100% (2835/2835), 695.00 KiB | 23.17 MiB/s, done. Resolving deltas: 100% (2114/2114), done. Branch 'dev' set up to track remote branch 'dev' from 'origin'. Switched to a new branch 'dev' Obtaining file:///content/wilds Requirement already satisfied: numpy>=1.19.1 in /usr/local/lib/python3.7/dist-packages (from wilds==1.1.0) (1.19.5) Requirement already satisfied: pandas>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from wilds==1.1.0) (1.1.5) Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist-packages (from wilds==1.1.0) (0.22.2.post1) Collecting pillow>=7.2.0 Downloading https://files.pythonhosted.org/packages/33/34/542152297dcc6c47a9dcb0685eac6d652d878ed3cea83bf2b23cb988e857/Pillow-8.2.0-cp37-cp37m-manylinux1_x86_64.whl (3.0MB) |████████████████████████████████| 3.0MB 26.7MB/s Requirement already satisfied: torch>=1.7.0 in /usr/local/lib/python3.7/dist-packages (from wilds==1.1.0) (1.7.1+cu101) Collecting ogb>=1.2.6 Downloading https://files.pythonhosted.org/packages/d2/c5/20b1e4a5ff90ead06139ce1c2362474b97bb3a73ee0166eb37f2d3eb0dba/ogb-1.3.1-py3-none-any.whl (67kB) |████████████████████████████████| 71kB 11.1MB/s Requirement already satisfied: tqdm>=4.53.0 in /usr/local/lib/python3.7/dist-packages (from wilds==1.1.0) (4.60.0) Collecting outdated>=0.2.0 Downloading https://files.pythonhosted.org/packages/fd/f6/95588d496e518355c33b389222c99069b1c6f2c046be64f400072fdc7cda/outdated-0.2.1-py3-none-any.whl Collecting pytz>=2020.4 Downloading https://files.pythonhosted.org/packages/70/94/784178ca5dd892a98f113cdd923372024dc04b8d40abe77ca76b5fb90ca6/pytz-2021.1-py2.py3-none-any.whl (510kB) |████████████████████████████████| 512kB 49.7MB/s Requirement already satisfied: torchvision==0.8.2 in /usr/local/lib/python3.7/dist-packages (from wilds==1.1.0) (0.8.2+cu101) Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.0->wilds==1.1.0) (2.8.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.20.0->wilds==1.1.0) (1.0.1) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.20.0->wilds==1.1.0) (1.4.1) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.7.0->wilds==1.1.0) (3.7.4.3) Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.7/dist-packages (from ogb>=1.2.6->wilds==1.1.0) (1.15.0) Requirement already satisfied: urllib3>=1.24.0 in /usr/local/lib/python3.7/dist-packages (from ogb>=1.2.6->wilds==1.1.0) (1.24.3) Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from outdated>=0.2.0->wilds==1.1.0) (2.25.1) Collecting littleutils Downloading https://files.pythonhosted.org/packages/4e/b1/bb4e06f010947d67349f863b6a2ad71577f85590180a935f60543f622652/littleutils-0.2.2.tar.gz Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->outdated>=0.2.0->wilds==1.1.0) (2020.12.5) Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->outdated>=0.2.0->wilds==1.1.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->outdated>=0.2.0->wilds==1.1.0) (2.10) Building wheels for collected packages: littleutils Building wheel for littleutils (setup.py) ... done Created wheel for littleutils: filename=littleutils-0.2.2-cp37-none-any.whl size=7051 sha256=35df43dd0cd025e7469306166212eecced8f95726f2f9f72ce484c2939f7de59 Stored in directory: /root/.cache/pip/wheels/53/16/9f/ac67d15c40243754fd73f620e1b9b6dedc20492ecc19a2bae1 Successfully built littleutils ERROR: google-colab 1.0.0 has requirement requests~=2.23.0, but you'll have requests 2.25.1 which is incompatible. ERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible. Installing collected packages: pillow, littleutils, outdated, ogb, pytz, wilds Found existing installation: Pillow 7.1.2 Uninstalling Pillow-7.1.2: Successfully uninstalled Pillow-7.1.2 Found existing installation: pytz 2018.9 Uninstalling pytz-2018.9: Successfully uninstalled pytz-2018.9 Running setup.py develop for wilds Successfully installed littleutils-0.2.2 ogb-1.3.1 outdated-0.2.1 pillow-8.2.0 pytz-2021.1 wilds Collecting transformers Downloading https://files.pythonhosted.org/packages/b0/9e/5b80becd952d5f7250eaf8fc64b957077b12ccfe73e9c03d37146ab29712/transformers-4.6.0-py3-none-any.whl (2.3MB) |████████████████████████████████| 2.3MB 30.5MB/s Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from transformers) (4.0.1) Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.19.5) Collecting sacremoses Downloading https://files.pythonhosted.org/packages/75/ee/67241dc87f266093c533a2d4d3d69438e57d7a90abb216fa076e7d475d4a/sacremoses-0.0.45-py3-none-any.whl (895kB) |████████████████████████████████| 901kB 45.7MB/s Collecting huggingface-hub==0.0.8 Downloading https://files.pythonhosted.org/packages/a1/88/7b1e45720ecf59c6c6737ff332f41c955963090a18e72acbcbeac6b25e86/huggingface_hub-0.0.8-py3-none-any.whl Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.25.1) Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.60.0) Collecting tokenizers<0.11,>=0.10.1 Downloading https://files.pythonhosted.org/packages/ae/04/5b870f26a858552025a62f1649c20d29d2672c02ff3c3fb4c688ca46467a/tokenizers-0.10.2-cp37-cp37m-manylinux2010_x86_64.whl (3.3MB) |████████████████████████████████| 3.3MB 50.3MB/s Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.0.12) Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20) Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from transformers) (20.9) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->transformers) (3.4.1) Requirement already satisfied: typing-extensions>=3.6.4; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->transformers) (3.7.4.3) Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.0.1) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.15.0) Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2020.12.5) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3) Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4) Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->transformers) (2.4.7) Installing collected packages: sacremoses, huggingface-hub, tokenizers, transformers Successfully installed huggingface-hub-0.0.8 sacremoses-0.0.45 tokenizers-0.10.2 transformers-4.6.0
Run the WILDS package¶
This sample command will train a FasterRCNN model with the Group DRO algorithm that tries to minimize the loss of the worst-case training domain.
To train using a different algorithm like standard empirical risk minimization (ERM), simply replace --algorithm groupDRO
with --algorithm ERM
.
WILDS will automatically handle downloading the Global Wheat Competition dataset to the location specified in root_dir
. For the purposes of this competition, both the val and the test sets in the WILDS library do not have labels provided, so the reported val and test accuracies are just dummy values.
N_EPOCHS=10
SAVE_TO="gdro"
!python3 wilds/examples/run_expt.py -d globalwheat --algorithm groupDRO --root_dir data --log_dir $SAVE_TO --download --progress_bar --save_step 1 --split_scheme official --n_epochs $N_EPOCHS
2021-05-17 06:49:23.673279: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 Dataset: gwhd Algorithm: groupDRO Root dir: data Split scheme: official Dataset kwargs: {} Download: True Frac: 1.0 Version: None Loader kwargs: {'num_workers': 1, 'pin_memory': True} Train loader: standard Uniform over groups: True Distinct groups: True N groups per batch: 4 Batch size: 4 Eval loader: standard Model: fasterrcnn Model kwargs: {'n_classes': 1, 'pretrained': True, 'pretrained_model': True, 'pretrained_backbone': True, 'min_size': 1024, 'max_size': 1024} Train transform: image_base Eval transform: image_base Target resolution: None Resize scale: None Max token length: None Loss function: fasterrcnn_criterion Loss kwargs: {} Groupby fields: ['location_date_sensor'] Group dro step size: 0.01 Coral penalty weight: None Irm lambda: None Irm penalty anneal iters: None Algo log metric: None Val metric: detection_acc_avg Val metric decreasing: False N epochs: 10 Optimizer: Adam Lr: 1e-05 Weight decay: 0.0001 Max grad norm: None Optimizer kwargs: {} Scheduler: None Scheduler kwargs: {} Scheduler metric split: val Scheduler metric name: None Process outputs function: None Evaluate all splits: True Eval splits: [] Eval only: False Eval epoch: None Device: cuda:0 Seed: 0 Log dir: gdro Log every: 50 Save step: 1 Save best: True Save last: True Save pred: True No group logging: False Use wandb: False Progress bar: True Resume: False Downloading dataset to data/gwhd_v0.9... You can also download the dataset manually at https://wilds.stanford.edu/downloads. Downloading https://worksheets.codalab.org/rest/bundles/0x8ba9122a41454997afdfb78762d390cf/contents/blob/ to data/gwhd_v0.9/archive.tar.gz 100% 10279141376/10280247296 [08:55<00:00, 18152342.55Byte/s]Extracting data/gwhd_v0.9/archive.tar.gz to data/gwhd_v0.9 10280386560Byte [09:43, 17628119.31Byte/s] It took 13.81 minutes to download and uncompress the dataset. Train data... location_date_sensor = 0: n = 29 location_date_sensor = 1: n = 60 location_date_sensor = 2: n = 176 location_date_sensor = 3: n = 20 location_date_sensor = 4: n = 24 location_date_sensor = 5: n = 448 location_date_sensor = 6: n = 160 location_date_sensor = 7: n = 60 location_date_sensor = 8: n = 32 location_date_sensor = 9: n = 82 location_date_sensor = 10: n = 204 location_date_sensor = 11: n = 30 location_date_sensor = 12: n = 747 location_date_sensor = 13: n = 66 location_date_sensor = 14: n = 401 location_date_sensor = 15: n = 588 location_date_sensor = 16: n = 98 location_date_sensor = 17: n = 432 location_date_sensor = 18: n = 0 location_date_sensor = 19: n = 0 location_date_sensor = 20: n = 0 location_date_sensor = 21: n = 0 location_date_sensor = 22: n = 0 location_date_sensor = 23: n = 0 location_date_sensor = 24: n = 0 location_date_sensor = 25: n = 0 location_date_sensor = 26: n = 0 location_date_sensor = 27: n = 0 location_date_sensor = 28: n = 0 location_date_sensor = 29: n = 0 location_date_sensor = 30: n = 0 location_date_sensor = 31: n = 0 location_date_sensor = 32: n = 0 location_date_sensor = 33: n = 0 location_date_sensor = 34: n = 0 location_date_sensor = 35: n = 0 location_date_sensor = 36: n = 0 location_date_sensor = 37: n = 0 location_date_sensor = 38: n = 0 location_date_sensor = 39: n = 0 location_date_sensor = 40: n = 0 location_date_sensor = 41: n = 0 location_date_sensor = 42: n = 0 location_date_sensor = 43: n = 0 location_date_sensor = 44: n = 0 location_date_sensor = 45: n = 0 location_date_sensor = 46: n = 0 Validation data... location_date_sensor = 0: n = 0 location_date_sensor = 1: n = 0 location_date_sensor = 2: n = 0 location_date_sensor = 3: n = 0 location_date_sensor = 4: n = 0 location_date_sensor = 5: n = 0 location_date_sensor = 6: n = 0 location_date_sensor = 7: n = 0 location_date_sensor = 8: n = 0 location_date_sensor = 9: n = 0 location_date_sensor = 10: n = 0 location_date_sensor = 11: n = 0 location_date_sensor = 12: n = 0 location_date_sensor = 13: n = 0 location_date_sensor = 14: n = 0 location_date_sensor = 15: n = 0 location_date_sensor = 16: n = 0 location_date_sensor = 17: n = 0 location_date_sensor = 18: n = 12 location_date_sensor = 19: n = 49 location_date_sensor = 20: n = 254 location_date_sensor = 21: n = 216 location_date_sensor = 22: n = 89 location_date_sensor = 23: n = 11 location_date_sensor = 24: n = 4 location_date_sensor = 25: n = 7 location_date_sensor = 26: n = 14 location_date_sensor = 27: n = 17 location_date_sensor = 28: n = 14 location_date_sensor = 29: n = 8 location_date_sensor = 30: n = 43 location_date_sensor = 31: n = 55 location_date_sensor = 32: n = 51 location_date_sensor = 33: n = 50 location_date_sensor = 34: n = 28 location_date_sensor = 35: n = 75 location_date_sensor = 36: n = 56 location_date_sensor = 37: n = 34 location_date_sensor = 38: n = 55 location_date_sensor = 39: n = 13 location_date_sensor = 40: n = 19 location_date_sensor = 41: n = 19 location_date_sensor = 42: n = 57 location_date_sensor = 43: n = 39 location_date_sensor = 44: n = 33 location_date_sensor = 45: n = 39 location_date_sensor = 46: n = 30 Test data... location_date_sensor = 0: n = 0 location_date_sensor = 1: n = 0 location_date_sensor = 2: n = 0 location_date_sensor = 3: n = 0 location_date_sensor = 4: n = 0 location_date_sensor = 5: n = 0 location_date_sensor = 6: n = 0 location_date_sensor = 7: n = 0 location_date_sensor = 8: n = 0 location_date_sensor = 9: n = 0 location_date_sensor = 10: n = 0 location_date_sensor = 11: n = 0 location_date_sensor = 12: n = 0 location_date_sensor = 13: n = 0 location_date_sensor = 14: n = 0 location_date_sensor = 15: n = 0 location_date_sensor = 16: n = 0 location_date_sensor = 17: n = 0 location_date_sensor = 18: n = 8 location_date_sensor = 19: n = 71 location_date_sensor = 20: n = 284 location_date_sensor = 21: n = 240 location_date_sensor = 22: n = 111 location_date_sensor = 23: n = 11 location_date_sensor = 24: n = 12 location_date_sensor = 25: n = 7 location_date_sensor = 26: n = 16 location_date_sensor = 27: n = 13 location_date_sensor = 28: n = 16 location_date_sensor = 29: n = 14 location_date_sensor = 30: n = 57 location_date_sensor = 31: n = 45 location_date_sensor = 32: n = 49 location_date_sensor = 33: n = 45 location_date_sensor = 34: n = 32 location_date_sensor = 35: n = 69 location_date_sensor = 36: n = 49 location_date_sensor = 37: n = 26 location_date_sensor = 38: n = 45 location_date_sensor = 39: n = 4 location_date_sensor = 40: n = 22 location_date_sensor = 41: n = 14 location_date_sensor = 42: n = 49 location_date_sensor = 43: n = 45 location_date_sensor = 44: n = 36 location_date_sensor = 45: n = 38 location_date_sensor = 46: n = 30 Downloading: "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth" to /root/.cache/torch/hub/checkpoints/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth 100% 160M/160M [00:00<00:00, 193MB/s] Epoch [0]: Train: 5% 49/915 [01:11<21:08, 1.46s/it]objective: 0.363 loss_avg: 1.779 location_date_sensor = 0 [n = 14]: weight: 0.059 loss: 1.998 location_date_sensor = 1 [n = 6]: weight: 0.054 loss: 1.548 location_date_sensor = 2 [n = 10]: weight: 0.053 loss: 1.479 location_date_sensor = 3 [n = 5]: weight: 0.056 loss: 2.450 location_date_sensor = 4 [n = 11]: weight: 0.053 loss: 1.531 location_date_sensor = 5 [n = 7]: weight: 0.054 loss: 1.603 location_date_sensor = 6 [n = 9]: weight: 0.055 loss: 1.743 location_date_sensor = 7 [n = 14]: weight: 0.058 loss: 2.052 location_date_sensor = 8 [n = 12]: weight: 0.060 loss: 2.311 location_date_sensor = 9 [n = 14]: weight: 0.063 loss: 2.453 location_date_sensor = 10 [n = 12]: weight: 0.054 loss: 1.401 location_date_sensor = 11 [n = 11]: weight: 0.059 loss: 2.345 location_date_sensor = 12 [n = 10]: weight: 0.053 loss: 1.396 location_date_sensor = 13 [n = 12]: weight: 0.055 loss: 1.569 location_date_sensor = 14 [n = 11]: weight: 0.057 loss: 1.775 location_date_sensor = 15 [n = 14]: weight: 0.054 loss: 1.516 location_date_sensor = 16 [n = 19]: weight: 0.056 loss: 1.451 location_date_sensor = 17 [n = 9]: weight: 0.055 loss: 1.474 11% 99/915 [02:27<20:39, 1.52s/it]objective: 0.263 loss_avg: 1.289 location_date_sensor = 0 [n = 8]: weight: 0.058 loss: 1.654 location_date_sensor = 1 [n = 6]: weight: 0.048 loss: 0.929 location_date_sensor = 2 [n = 15]: weight: 0.053 loss: 1.236 location_date_sensor = 3 [n = 16]: weight: 0.055 loss: 1.333 location_date_sensor = 4 [n = 10]: weight: 0.054 loss: 1.280 location_date_sensor = 5 [n = 10]: weight: 0.051 loss: 0.900 location_date_sensor = 6 [n = 19]: weight: 0.057 loss: 1.177 location_date_sensor = 7 [n = 15]: weight: 0.065 loss: 1.693 location_date_sensor = 8 [n = 10]: weight: 0.058 loss: 1.351 location_date_sensor = 9 [n = 8]: weight: 0.063 loss: 1.397 location_date_sensor = 10 [n = 8]: weight: 0.052 loss: 1.217 location_date_sensor = 11 [n = 7]: weight: 0.058 loss: 1.600 location_date_sensor = 12 [n = 11]: weight: 0.054 loss: 1.211 location_date_sensor = 13 [n = 10]: weight: 0.055 loss: 1.325 location_date_sensor = 14 [n = 11]: weight: 0.056 loss: 1.303 location_date_sensor = 15 [n = 18]: weight: 0.058 loss: 1.326 location_date_sensor = 16 [n = 10]: weight: 0.058 loss: 1.131 location_date_sensor = 17 [n = 8]: weight: 0.050 loss: 0.989 16% 149/915 [03:43<19:30, 1.53s/it]objective: 0.237 loss_avg: 1.136 location_date_sensor = 0 [n = 14]: weight: 0.060 loss: 1.224 location_date_sensor = 1 [n = 13]: weight: 0.047 loss: 0.782 location_date_sensor = 2 [n = 11]: weight: 0.054 loss: 1.129 location_date_sensor = 3 [n = 10]: weight: 0.055 loss: 1.096 location_date_sensor = 4 [n = 14]: weight: 0.054 loss: 1.233 location_date_sensor = 5 [n = 12]: weight: 0.049 loss: 0.940 location_date_sensor = 6 [n = 14]: weight: 0.057 loss: 1.005 location_date_sensor = 7 [n = 14]: weight: 0.070 loss: 1.451 location_date_sensor = 8 [n = 12]: weight: 0.059 loss: 1.205 location_date_sensor = 9 [n = 12]: weight: 0.062 loss: 1.305 location_date_sensor = 10 [n = 13]: weight: 0.052 loss: 1.186 location_date_sensor = 11 [n = 9]: weight: 0.059 loss: 1.461 location_date_sensor = 12 [n = 9]: weight: 0.052 loss: 1.014 location_date_sensor = 13 [n = 10]: weight: 0.056 loss: 1.107 location_date_sensor = 14 [n = 8]: weight: 0.056 loss: 1.147 location_date_sensor = 15 [n = 8]: weight: 0.060 loss: 1.214 location_date_sensor = 16 [n = 5]: weight: 0.053 loss: 1.095 location_date_sensor = 17 [n = 12]: weight: 0.049 loss: 0.864 22% 199/915 [05:00<18:10, 1.52s/it]objective: 0.225 loss_avg: 1.067 location_date_sensor = 0 [n = 10]: weight: 0.062 loss: 1.331 location_date_sensor = 1 [n = 10]: weight: 0.045 loss: 0.749 location_date_sensor = 2 [n = 13]: weight: 0.054 loss: 0.953 location_date_sensor = 3 [n = 9]: weight: 0.055 loss: 1.025 location_date_sensor = 4 [n = 10]: weight: 0.055 loss: 1.034 location_date_sensor = 5 [n = 11]: weight: 0.048 loss: 0.922 location_date_sensor = 6 [n = 8]: weight: 0.057 loss: 0.927 location_date_sensor = 7 [n = 10]: weight: 0.070 loss: 1.337 location_date_sensor = 8 [n = 12]: weight: 0.060 loss: 1.063 location_date_sensor = 9 [n = 19]: weight: 0.065 loss: 1.125 location_date_sensor = 10 [n = 18]: weight: 0.055 loss: 1.108 location_date_sensor = 11 [n = 8]: weight: 0.058 loss: 1.340 location_date_sensor = 12 [n = 10]: weight: 0.050 loss: 0.961 location_date_sensor = 13 [n = 10]: weight: 0.056 loss: 1.198 location_date_sensor = 14 [n = 12]: weight: 0.055 loss: 1.082 location_date_sensor = 15 [n = 16]: weight: 0.059 loss: 1.057 location_date_sensor = 16 [n = 8]: weight: 0.053 loss: 1.093 location_date_sensor = 17 [n = 6]: weight: 0.047 loss: 0.767 27% 249/915 [06:16<16:53, 1.52s/it]objective: 0.220 loss_avg: 1.020 location_date_sensor = 0 [n = 9]: weight: 0.064 loss: 1.383 location_date_sensor = 1 [n = 15]: weight: 0.043 loss: 0.725 location_date_sensor = 2 [n = 10]: weight: 0.054 loss: 0.946 location_date_sensor = 3 [n = 7]: weight: 0.053 loss: 1.022 location_date_sensor = 4 [n = 8]: weight: 0.053 loss: 1.043 location_date_sensor = 5 [n = 7]: weight: 0.046 loss: 0.776 location_date_sensor = 6 [n = 14]: weight: 0.056 loss: 0.896 location_date_sensor = 7 [n = 22]: weight: 0.077 loss: 1.249 location_date_sensor = 8 [n = 6]: weight: 0.060 loss: 1.019 location_date_sensor = 9 [n = 15]: weight: 0.068 loss: 1.094 location_date_sensor = 10 [n = 15]: weight: 0.057 loss: 1.041 location_date_sensor = 11 [n = 11]: weight: 0.057 loss: 1.247 location_date_sensor = 12 [n = 8]: weight: 0.049 loss: 0.915 location_date_sensor = 13 [n = 11]: weight: 0.054 loss: 1.056 location_date_sensor = 14 [n = 8]: weight: 0.055 loss: 1.056 location_date_sensor = 15 [n = 10]: weight: 0.060 loss: 0.996 location_date_sensor = 16 [n = 12]: weight: 0.052 loss: 1.027 location_date_sensor = 17 [n = 12]: weight: 0.044 loss: 0.737 33% 299/915 [07:32<15:40, 1.53s/it]objective: 0.195 loss_avg: 0.954 location_date_sensor = 0 [n = 7]: weight: 0.063 loss: 0.891 location_date_sensor = 1 [n = 11]: weight: 0.042 loss: 0.624 location_date_sensor = 2 [n = 13]: weight: 0.053 loss: 0.940 location_date_sensor = 3 [n = 10]: weight: 0.052 loss: 0.962 location_date_sensor = 4 [n = 8]: weight: 0.053 loss: 0.953 location_date_sensor = 5 [n = 10]: weight: 0.045 loss: 0.859 location_date_sensor = 6 [n = 15]: weight: 0.057 loss: 0.908 location_date_sensor = 7 [n = 12]: weight: 0.080 loss: 1.122 location_date_sensor = 8 [n = 15]: weight: 0.059 loss: 0.987 location_date_sensor = 9 [n = 17]: weight: 0.071 loss: 1.023 location_date_sensor = 10 [n = 8]: weight: 0.058 loss: 1.118 location_date_sensor = 11 [n = 10]: weight: 0.058 loss: 1.186 location_date_sensor = 12 [n = 5]: weight: 0.046 loss: 0.890 location_date_sensor = 13 [n = 8]: weight: 0.053 loss: 1.130 location_date_sensor = 14 [n = 15]: weight: 0.056 loss: 0.998 location_date_sensor = 15 [n = 8]: weight: 0.061 loss: 1.001 location_date_sensor = 16 [n = 13]: weight: 0.053 loss: 0.953 location_date_sensor = 17 [n = 15]: weight: 0.044 loss: 0.713 38% 349/915 [08:49<14:24, 1.53s/it]objective: 0.201 loss_avg: 0.960 location_date_sensor = 0 [n = 14]: weight: 0.063 loss: 1.040 location_date_sensor = 1 [n = 12]: weight: 0.041 loss: 0.695 location_date_sensor = 2 [n = 13]: weight: 0.053 loss: 0.795 location_date_sensor = 3 [n = 10]: weight: 0.050 loss: 0.870 location_date_sensor = 4 [n = 9]: weight: 0.051 loss: 0.888 location_date_sensor = 5 [n = 13]: weight: 0.045 loss: 0.728 location_date_sensor = 6 [n = 9]: weight: 0.057 loss: 0.889 location_date_sensor = 7 [n = 14]: weight: 0.085 loss: 1.135 location_date_sensor = 8 [n = 4]: weight: 0.057 loss: 1.032 location_date_sensor = 9 [n = 12]: weight: 0.074 loss: 1.271 location_date_sensor = 10 [n = 6]: weight: 0.056 loss: 1.024 location_date_sensor = 11 [n = 6]: weight: 0.057 loss: 1.185 location_date_sensor = 12 [n = 16]: weight: 0.046 loss: 0.858 location_date_sensor = 13 [n = 12]: weight: 0.054 loss: 1.057 location_date_sensor = 14 [n = 12]: weight: 0.056 loss: 1.017 location_date_sensor = 15 [n = 14]: weight: 0.060 loss: 1.019 location_date_sensor = 16 [n = 15]: weight: 0.054 loss: 1.137 location_date_sensor = 17 [n = 9]: weight: 0.043 loss: 0.680 44% 399/915 [10:05<13:06, 1.52s/it]objective: 0.196 loss_avg: 0.933 location_date_sensor = 0 [n = 11]: weight: 0.064 loss: 0.944 location_date_sensor = 1 [n = 10]: weight: 0.040 loss: 0.650 location_date_sensor = 2 [n = 11]: weight: 0.054 loss: 0.851 location_date_sensor = 3 [n = 10]: weight: 0.050 loss: 0.900 location_date_sensor = 4 [n = 15]: weight: 0.051 loss: 0.985 location_date_sensor = 5 [n = 18]: weight: 0.045 loss: 0.849 location_date_sensor = 6 [n = 10]: weight: 0.057 loss: 0.862 location_date_sensor = 7 [n = 8]: weight: 0.083 loss: 1.043 location_date_sensor = 8 [n = 5]: weight: 0.056 loss: 0.934 location_date_sensor = 9 [n = 12]: weight: 0.077 loss: 1.046 location_date_sensor = 10 [n = 10]: weight: 0.054 loss: 0.994 location_date_sensor = 11 [n = 12]: weight: 0.056 loss: 1.110 location_date_sensor = 12 [n = 7]: weight: 0.046 loss: 0.889 location_date_sensor = 13 [n = 8]: weight: 0.054 loss: 1.070 location_date_sensor = 14 [n = 10]: weight: 0.057 loss: 1.075 location_date_sensor = 15 [n = 17]: weight: 0.063 loss: 0.998 location_date_sensor = 16 [n = 11]: weight: 0.055 loss: 0.958 location_date_sensor = 17 [n = 15]: weight: 0.042 loss: 0.724 49% 449/915 [11:21<11:51, 1.53s/it]objective: 0.193 loss_avg: 0.914 location_date_sensor = 0 [n = 9]: weight: 0.063 loss: 0.864 location_date_sensor = 1 [n = 11]: weight: 0.038 loss: 0.622 location_date_sensor = 2 [n = 7]: weight: 0.052 loss: 0.822 location_date_sensor = 3 [n = 7]: weight: 0.049 loss: 0.846 location_date_sensor = 4 [n = 15]: weight: 0.053 loss: 0.969 location_date_sensor = 5 [n = 12]: weight: 0.046 loss: 0.614 location_date_sensor = 6 [n = 8]: weight: 0.055 loss: 0.775 location_date_sensor = 7 [n = 13]: weight: 0.087 loss: 1.213 location_date_sensor = 8 [n = 12]: weight: 0.054 loss: 0.920 location_date_sensor = 9 [n = 17]: weight: 0.080 loss: 1.058 location_date_sensor = 10 [n = 13]: weight: 0.055 loss: 1.034 location_date_sensor = 11 [n = 9]: weight: 0.057 loss: 1.149 location_date_sensor = 12 [n = 8]: weight: 0.045 loss: 0.825 location_date_sensor = 13 [n = 8]: weight: 0.053 loss: 1.016 location_date_sensor = 14 [n = 15]: weight: 0.059 loss: 0.980 location_date_sensor = 15 [n = 9]: weight: 0.064 loss: 0.882 location_date_sensor = 16 [n = 15]: weight: 0.055 loss: 0.950 location_date_sensor = 17 [n = 12]: weight: 0.041 loss: 0.680 55% 499/915 [12:38<10:35, 1.53s/it]objective: 0.200 loss_avg: 0.915 location_date_sensor = 0 [n = 11]: weight: 0.062 loss: 0.897 location_date_sensor = 1 [n = 9]: weight: 0.037 loss: 0.590 location_date_sensor = 2 [n = 12]: weight: 0.051 loss: 0.811 location_date_sensor = 3 [n = 9]: weight: 0.048 loss: 0.887 location_date_sensor = 4 [n = 10]: weight: 0.054 loss: 0.956 location_date_sensor = 5 [n = 18]: weight: 0.045 loss: 0.818 location_date_sensor = 6 [n = 13]: weight: 0.053 loss: 0.828 location_date_sensor = 7 [n = 15]: weight: 0.091 loss: 1.093 location_date_sensor = 8 [n = 10]: weight: 0.053 loss: 0.954 location_date_sensor = 9 [n = 11]: weight: 0.083 loss: 1.046 location_date_sensor = 10 [n = 11]: weight: 0.056 loss: 1.019 location_date_sensor = 11 [n = 11]: weight: 0.057 loss: 1.099 location_date_sensor = 12 [n = 5]: weight: 0.041 loss: 0.870 location_date_sensor = 13 [n = 15]: weight: 0.054 loss: 1.053 location_date_sensor = 14 [n = 8]: weight: 0.059 loss: 0.982 location_date_sensor = 15 [n = 12]: weight: 0.064 loss: 0.903 location_date_sensor = 16 [n = 8]: weight: 0.055 loss: 0.982 location_date_sensor = 17 [n = 12]: weight: 0.040 loss: 0.641 60% 549/915 [13:54<09:17, 1.52s/it]objective: 0.189 loss_avg: 0.883 location_date_sensor = 0 [n = 11]: weight: 0.061 loss: 0.995 location_date_sensor = 1 [n = 7]: weight: 0.035 loss: 0.625 location_date_sensor = 2 [n = 10]: weight: 0.050 loss: 0.794 location_date_sensor = 3 [n = 12]: weight: 0.047 loss: 0.762 location_date_sensor = 4 [n = 11]: weight: 0.053 loss: 0.940 location_date_sensor = 5 [n = 12]: weight: 0.046 loss: 0.744 location_date_sensor = 6 [n = 12]: weight: 0.054 loss: 0.860 location_date_sensor = 7 [n = 12]: weight: 0.095 loss: 1.077 location_date_sensor = 8 [n = 10]: weight: 0.053 loss: 0.893 location_date_sensor = 9 [n = 15]: weight: 0.086 loss: 0.917 location_date_sensor = 10 [n = 11]: weight: 0.056 loss: 1.016 location_date_sensor = 11 [n = 8]: weight: 0.057 loss: 0.994 location_date_sensor = 12 [n = 14]: weight: 0.041 loss: 0.817 location_date_sensor = 13 [n = 11]: weight: 0.055 loss: 1.052 location_date_sensor = 14 [n = 5]: weight: 0.058 loss: 1.021 location_date_sensor = 15 [n = 13]: weight: 0.064 loss: 0.906 location_date_sensor = 16 [n = 13]: weight: 0.055 loss: 0.848 location_date_sensor = 17 [n = 13]: weight: 0.039 loss: 0.683 65% 599/915 [15:10<08:03, 1.53s/it]objective: 0.200 loss_avg: 0.904 location_date_sensor = 0 [n = 8]: weight: 0.061 loss: 0.866 location_date_sensor = 1 [n = 4]: weight: 0.033 loss: 0.682 location_date_sensor = 2 [n = 10]: weight: 0.049 loss: 0.863 location_date_sensor = 3 [n = 13]: weight: 0.047 loss: 0.752 location_date_sensor = 4 [n = 15]: weight: 0.055 loss: 0.914 location_date_sensor = 5 [n = 9]: weight: 0.045 loss: 0.829 location_date_sensor = 6 [n = 10]: weight: 0.052 loss: 0.729 location_date_sensor = 7 [n = 12]: weight: 0.097 loss: 1.025 location_date_sensor = 8 [n = 8]: weight: 0.051 loss: 0.914 location_date_sensor = 9 [n = 14]: weight: 0.088 loss: 0.974 location_date_sensor = 10 [n = 15]: weight: 0.058 loss: 1.072 location_date_sensor = 11 [n = 12]: weight: 0.056 loss: 1.044 location_date_sensor = 12 [n = 10]: weight: 0.041 loss: 0.824 location_date_sensor = 13 [n = 18]: weight: 0.059 loss: 0.951 location_date_sensor = 14 [n = 11]: weight: 0.056 loss: 0.989 location_date_sensor = 15 [n = 12]: weight: 0.065 loss: 0.952 location_date_sensor = 16 [n = 7]: weight: 0.054 loss: 0.909 location_date_sensor = 17 [n = 12]: weight: 0.038 loss: 0.698 71% 649/915 [16:26<06:45, 1.52s/it]objective: 0.182 loss_avg: 0.885 location_date_sensor = 0 [n = 8]: weight: 0.060 loss: 0.785 location_date_sensor = 1 [n = 11]: weight: 0.031 loss: 0.628 location_date_sensor = 2 [n = 10]: weight: 0.048 loss: 0.743 location_date_sensor = 3 [n = 4]: weight: 0.044 loss: 0.873 location_date_sensor = 4 [n = 5]: weight: 0.054 loss: 0.844 location_date_sensor = 5 [n = 7]: weight: 0.043 loss: 0.752 location_date_sensor = 6 [n = 13]: weight: 0.052 loss: 0.825 location_date_sensor = 7 [n = 7]: weight: 0.096 loss: 1.145 location_date_sensor = 8 [n = 11]: weight: 0.051 loss: 0.945 location_date_sensor = 9 [n = 7]: weight: 0.089 loss: 0.951 location_date_sensor = 10 [n = 13]: weight: 0.059 loss: 0.978 location_date_sensor = 11 [n = 15]: weight: 0.058 loss: 1.037 location_date_sensor = 12 [n = 12]: weight: 0.040 loss: 0.808 location_date_sensor = 13 [n = 10]: weight: 0.061 loss: 1.016 location_date_sensor = 14 [n = 20]: weight: 0.059 loss: 0.948 location_date_sensor = 15 [n = 19]: weight: 0.067 loss: 0.956 location_date_sensor = 16 [n = 13]: weight: 0.054 loss: 1.001 location_date_sensor = 17 [n = 15]: weight: 0.037 loss: 0.621 76% 699/915 [17:43<05:30, 1.53s/it]objective: 0.184 loss_avg: 0.876 location_date_sensor = 0 [n = 13]: weight: 0.059 loss: 0.808 location_date_sensor = 1 [n = 6]: weight: 0.030 loss: 0.648 location_date_sensor = 2 [n = 12]: weight: 0.048 loss: 0.782 location_date_sensor = 3 [n = 11]: weight: 0.043 loss: 0.828 location_date_sensor = 4 [n = 9]: weight: 0.053 loss: 0.884 location_date_sensor = 5 [n = 13]: weight: 0.043 loss: 0.768 location_date_sensor = 6 [n = 11]: weight: 0.051 loss: 0.777 location_date_sensor = 7 [n = 9]: weight: 0.096 loss: 1.061 location_date_sensor = 8 [n = 13]: weight: 0.051 loss: 0.865 location_date_sensor = 9 [n = 8]: weight: 0.086 loss: 0.931 location_date_sensor = 10 [n = 14]: weight: 0.060 loss: 1.002 location_date_sensor = 11 [n = 10]: weight: 0.060 loss: 0.981 location_date_sensor = 12 [n = 13]: weight: 0.039 loss: 0.815 location_date_sensor = 13 [n = 16]: weight: 0.062 loss: 0.997 location_date_sensor = 14 [n = 15]: weight: 0.062 loss: 0.967 location_date_sensor = 15 [n = 8]: weight: 0.068 loss: 0.928 location_date_sensor = 16 [n = 10]: weight: 0.055 loss: 0.933 location_date_sensor = 17 [n = 9]: weight: 0.036 loss: 0.661 82% 749/915 [18:59<04:13, 1.53s/it]objective: 0.180 loss_avg: 0.834 location_date_sensor = 0 [n = 15]: weight: 0.059 loss: 0.785 location_date_sensor = 1 [n = 10]: weight: 0.029 loss: 0.581 location_date_sensor = 2 [n = 17]: weight: 0.048 loss: 0.729 location_date_sensor = 3 [n = 11]: weight: 0.043 loss: 0.770 location_date_sensor = 4 [n = 11]: weight: 0.052 loss: 0.920 location_date_sensor = 5 [n = 7]: weight: 0.041 loss: 0.869 location_date_sensor = 6 [n = 9]: weight: 0.051 loss: 0.768 location_date_sensor = 7 [n = 12]: weight: 0.097 loss: 0.973 location_date_sensor = 8 [n = 9]: weight: 0.051 loss: 0.856 location_date_sensor = 9 [n = 14]: weight: 0.088 loss: 0.953 location_date_sensor = 10 [n = 7]: weight: 0.060 loss: 1.001 location_date_sensor = 11 [n = 6]: weight: 0.059 loss: 1.069 location_date_sensor = 12 [n = 12]: weight: 0.039 loss: 0.794 location_date_sensor = 13 [n = 14]: weight: 0.066 loss: 0.929 location_date_sensor = 14 [n = 11]: weight: 0.065 loss: 0.950 location_date_sensor = 15 [n = 11]: weight: 0.067 loss: 0.874 location_date_sensor = 16 [n = 9]: weight: 0.054 loss: 0.734 location_date_sensor = 17 [n = 15]: weight: 0.036 loss: 0.660 87% 799/915 [20:15<02:57, 1.53s/it]objective: 0.179 loss_avg: 0.858 location_date_sensor = 0 [n = 12]: weight: 0.059 loss: 0.994 location_date_sensor = 1 [n = 12]: weight: 0.028 loss: 0.590 location_date_sensor = 2 [n = 8]: weight: 0.047 loss: 0.806 location_date_sensor = 3 [n = 15]: weight: 0.044 loss: 0.838 location_date_sensor = 4 [n = 15]: weight: 0.053 loss: 0.864 location_date_sensor = 5 [n = 10]: weight: 0.040 loss: 0.783 location_date_sensor = 6 [n = 8]: weight: 0.049 loss: 0.766 location_date_sensor = 7 [n = 7]: weight: 0.096 loss: 0.838 location_date_sensor = 8 [n = 11]: weight: 0.052 loss: 0.815 location_date_sensor = 9 [n = 13]: weight: 0.092 loss: 0.924 location_date_sensor = 10 [n = 11]: weight: 0.060 loss: 0.924 location_date_sensor = 11 [n = 16]: weight: 0.058 loss: 0.982 location_date_sensor = 12 [n = 13]: weight: 0.039 loss: 0.804 location_date_sensor = 13 [n = 9]: weight: 0.066 loss: 1.053 location_date_sensor = 14 [n = 11]: weight: 0.065 loss: 0.912 location_date_sensor = 15 [n = 12]: weight: 0.068 loss: 0.938 location_date_sensor = 16 [n = 6]: weight: 0.052 loss: 0.950 location_date_sensor = 17 [n = 11]: weight: 0.036 loss: 0.641 93% 849/915 [21:32<01:40, 1.52s/it]objective: 0.172 loss_avg: 0.843 location_date_sensor = 0 [n = 5]: weight: 0.059 loss: 0.865 location_date_sensor = 1 [n = 13]: weight: 0.028 loss: 0.568 location_date_sensor = 2 [n = 11]: weight: 0.046 loss: 0.681 location_date_sensor = 3 [n = 14]: weight: 0.046 loss: 0.781 location_date_sensor = 4 [n = 11]: weight: 0.054 loss: 0.865 location_date_sensor = 5 [n = 15]: weight: 0.041 loss: 0.797 location_date_sensor = 6 [n = 13]: weight: 0.048 loss: 0.823 location_date_sensor = 7 [n = 9]: weight: 0.093 loss: 0.918 location_date_sensor = 8 [n = 10]: weight: 0.050 loss: 0.875 location_date_sensor = 9 [n = 9]: weight: 0.091 loss: 0.903 location_date_sensor = 10 [n = 7]: weight: 0.060 loss: 0.921 location_date_sensor = 11 [n = 9]: weight: 0.059 loss: 0.956 location_date_sensor = 12 [n = 13]: weight: 0.039 loss: 0.807 location_date_sensor = 13 [n = 19]: weight: 0.069 loss: 0.963 location_date_sensor = 14 [n = 14]: weight: 0.067 loss: 0.951 location_date_sensor = 15 [n = 7]: weight: 0.067 loss: 0.790 location_date_sensor = 16 [n = 15]: weight: 0.052 loss: 0.979 location_date_sensor = 17 [n = 6]: weight: 0.034 loss: 0.647 98% 899/915 [22:48<00:24, 1.52s/it]objective: 0.180 loss_avg: 0.834 location_date_sensor = 0 [n = 14]: weight: 0.058 loss: 0.949 location_date_sensor = 1 [n = 10]: weight: 0.027 loss: 0.588 location_date_sensor = 2 [n = 5]: weight: 0.045 loss: 0.713 location_date_sensor = 3 [n = 14]: weight: 0.046 loss: 0.719 location_date_sensor = 4 [n = 8]: weight: 0.053 loss: 0.809 location_date_sensor = 5 [n = 10]: weight: 0.041 loss: 0.683 location_date_sensor = 6 [n = 10]: weight: 0.048 loss: 0.796 location_date_sensor = 7 [n = 14]: weight: 0.095 loss: 0.940 location_date_sensor = 8 [n = 14]: weight: 0.052 loss: 0.816 location_date_sensor = 9 [n = 16]: weight: 0.093 loss: 0.876 location_date_sensor = 10 [n = 11]: weight: 0.059 loss: 0.974 location_date_sensor = 11 [n = 10]: weight: 0.060 loss: 0.950 location_date_sensor = 12 [n = 16]: weight: 0.040 loss: 0.792 location_date_sensor = 13 [n = 13]: weight: 0.072 loss: 0.906 location_date_sensor = 14 [n = 9]: weight: 0.066 loss: 0.935 location_date_sensor = 15 [n = 6]: weight: 0.063 loss: 0.931 location_date_sensor = 16 [n = 11]: weight: 0.053 loss: 0.863 location_date_sensor = 17 [n = 9]: weight: 0.033 loss: 0.671 100% 915/915 [23:12<00:00, 1.52s/it] objective: 0.171 loss_avg: 0.845 location_date_sensor = 0 [n = 2]: weight: 0.057 loss: 0.668 location_date_sensor = 1 [n = 1]: weight: 0.026 loss: 0.738 location_date_sensor = 2 [n = 5]: weight: 0.044 loss: 0.746 location_date_sensor = 3 [n = 7]: weight: 0.047 loss: 0.770 location_date_sensor = 4 [n = 3]: weight: 0.053 loss: 0.835 location_date_sensor = 5 [n = 3]: weight: 0.040 loss: 0.900 location_date_sensor = 6 [n = 1]: weight: 0.046 loss: 0.799 location_date_sensor = 7 [n = 7]: weight: 0.098 loss: 0.921 location_date_sensor = 8 [n = 2]: weight: 0.052 loss: 0.835 location_date_sensor = 9 [n = 2]: weight: 0.095 loss: 1.050 location_date_sensor = 10 [n = 1]: weight: 0.059 loss: 0.912 location_date_sensor = 11 [n = 5]: weight: 0.060 loss: 0.983 location_date_sensor = 12 [n = 4]: weight: 0.041 loss: 0.735 location_date_sensor = 13 [n = 4]: weight: 0.072 loss: 0.912 location_date_sensor = 14 [n = 2]: weight: 0.066 loss: 0.835 location_date_sensor = 15 [n = 3]: weight: 0.064 loss: 0.800 location_date_sensor = 16 [n = 3]: weight: 0.052 loss: 0.996 location_date_sensor = 17 [n = 2]: weight: 0.032 loss: 0.625 Epoch eval: Average detection_acc: 0.617 location_date_sensor = 0 [n = 195]: detection_acc = 0.601 location_date_sensor = 1 [n = 177]: detection_acc = 0.799 location_date_sensor = 2 [n = 203]: detection_acc = 0.736 location_date_sensor = 3 [n = 194]: detection_acc = 0.666 location_date_sensor = 4 [n = 198]: detection_acc = 0.622 location_date_sensor = 5 [n = 204]: detection_acc = 0.666 location_date_sensor = 6 [n = 206]: detection_acc = 0.668 location_date_sensor = 7 [n = 226]: detection_acc = 0.474 location_date_sensor = 8 [n = 186]: detection_acc = 0.590 location_date_sensor = 9 [n = 235]: detection_acc = 0.481 location_date_sensor = 10 [n = 204]: detection_acc = 0.573 location_date_sensor = 11 [n = 185]: detection_acc = 0.457 location_date_sensor = 12 [n = 196]: detection_acc = 0.645 location_date_sensor = 13 [n = 218]: detection_acc = 0.598 location_date_sensor = 14 [n = 208]: detection_acc = 0.643 location_date_sensor = 15 [n = 217]: detection_acc = 0.648 location_date_sensor = 16 [n = 203]: detection_acc = 0.529 location_date_sensor = 17 [n = 202]: detection_acc = 0.763 Worst-group detection_acc: 0.457 Validation: 100% 348/348 [03:19<00:00, 1.75it/s] objective: 0.000 loss_avg: 1.000 location_date_sensor = 18 [n = 12]: weight: 0.000 loss: 1.000 location_date_sensor = 19 [n = 49]: weight: 0.000 loss: 1.000 location_date_sensor = 20 [n = 254]: weight: 0.000 loss: 1.000 location_date_sensor = 21 [n = 216]: weight: 0.000 loss: 1.000 location_date_sensor = 22 [n = 89]: weight: 0.000 loss: 1.000 location_date_sensor = 23 [n = 11]: weight: 0.000 loss: 1.000 location_date_sensor = 24 [n = 4]: weight: 0.000 loss: 1.000 location_date_sensor = 25 [n = 7]: weight: 0.000 loss: 1.000 location_date_sensor = 26 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 27 [n = 17]: weight: 0.000 loss: 1.000 location_date_sensor = 28 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 29 [n = 8]: weight: 0.000 loss: 1.000 location_date_sensor = 30 [n = 43]: weight: 0.000 loss: 1.000 location_date_sensor = 31 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 32 [n = 51]: weight: 0.000 loss: 1.000 location_date_sensor = 33 [n = 50]: weight: 0.000 loss: 1.000 location_date_sensor = 34 [n = 28]: weight: 0.000 loss: 1.000 location_date_sensor = 35 [n = 75]: weight: 0.000 loss: 1.000 location_date_sensor = 36 [n = 56]: weight: 0.000 loss: 1.000 location_date_sensor = 37 [n = 34]: weight: 0.000 loss: 1.000 location_date_sensor = 38 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 39 [n = 13]: weight: 0.000 loss: 1.000 location_date_sensor = 40 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 41 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 42 [n = 57]: weight: 0.000 loss: 1.000 location_date_sensor = 43 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 44 [n = 33]: weight: 0.000 loss: 1.000 location_date_sensor = 45 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 46 [n = 30]: weight: 0.000 loss: 1.000 Epoch eval: Average detection_acc: 0.007 location_date_sensor = 18 [n = 12]: detection_acc = 0.000 location_date_sensor = 19 [n = 49]: detection_acc = 0.020 location_date_sensor = 20 [n = 254]: detection_acc = 0.000 location_date_sensor = 21 [n = 216]: detection_acc = 0.000 location_date_sensor = 22 [n = 89]: detection_acc = 0.000 location_date_sensor = 23 [n = 11]: detection_acc = 0.000 location_date_sensor = 24 [n = 4]: detection_acc = 0.750 location_date_sensor = 25 [n = 7]: detection_acc = 0.000 location_date_sensor = 26 [n = 14]: detection_acc = 0.000 location_date_sensor = 27 [n = 17]: detection_acc = 0.059 location_date_sensor = 28 [n = 14]: detection_acc = 0.000 location_date_sensor = 29 [n = 8]: detection_acc = 0.000 location_date_sensor = 30 [n = 43]: detection_acc = 0.000 location_date_sensor = 31 [n = 55]: detection_acc = 0.000 location_date_sensor = 32 [n = 51]: detection_acc = 0.000 location_date_sensor = 33 [n = 50]: detection_acc = 0.000 location_date_sensor = 34 [n = 28]: detection_acc = 0.000 location_date_sensor = 35 [n = 75]: detection_acc = 0.013 location_date_sensor = 36 [n = 56]: detection_acc = 0.018 location_date_sensor = 37 [n = 34]: detection_acc = 0.029 location_date_sensor = 38 [n = 55]: detection_acc = 0.000 location_date_sensor = 39 [n = 13]: detection_acc = 0.000 location_date_sensor = 40 [n = 19]: detection_acc = 0.000 location_date_sensor = 41 [n = 19]: detection_acc = 0.000 location_date_sensor = 42 [n = 57]: detection_acc = 0.000 location_date_sensor = 43 [n = 39]: detection_acc = 0.000 location_date_sensor = 44 [n = 33]: detection_acc = 0.030 location_date_sensor = 45 [n = 39]: detection_acc = 0.000 location_date_sensor = 46 [n = 30]: detection_acc = 0.033 Worst-group detection_acc: 0.000 Validation detection_acc_avg: 0.007 Epoch 0 has the best validation performance so far. 100% 365/365 [03:28<00:00, 1.75it/s] Epoch [1]: Train: 5% 49/915 [01:15<22:09, 1.54s/it]objective: 0.174 loss_avg: 0.814 location_date_sensor = 0 [n = 10]: weight: 0.057 loss: 0.795 location_date_sensor = 1 [n = 11]: weight: 0.025 loss: 0.587 location_date_sensor = 2 [n = 8]: weight: 0.043 loss: 0.720 location_date_sensor = 3 [n = 15]: weight: 0.047 loss: 0.730 location_date_sensor = 4 [n = 14]: weight: 0.053 loss: 0.828 location_date_sensor = 5 [n = 12]: weight: 0.040 loss: 0.766 location_date_sensor = 6 [n = 8]: weight: 0.046 loss: 0.730 location_date_sensor = 7 [n = 9]: weight: 0.099 loss: 0.997 location_date_sensor = 8 [n = 10]: weight: 0.050 loss: 0.795 location_date_sensor = 9 [n = 17]: weight: 0.096 loss: 0.900 location_date_sensor = 10 [n = 8]: weight: 0.059 loss: 0.978 location_date_sensor = 11 [n = 15]: weight: 0.061 loss: 0.956 location_date_sensor = 12 [n = 12]: weight: 0.041 loss: 0.714 location_date_sensor = 13 [n = 13]: weight: 0.074 loss: 0.947 location_date_sensor = 14 [n = 10]: weight: 0.067 loss: 0.969 location_date_sensor = 15 [n = 7]: weight: 0.063 loss: 0.866 location_date_sensor = 16 [n = 6]: weight: 0.050 loss: 0.709 location_date_sensor = 17 [n = 15]: weight: 0.031 loss: 0.652 11% 99/915 [02:31<20:43, 1.52s/it]objective: 0.175 loss_avg: 0.823 location_date_sensor = 0 [n = 11]: weight: 0.056 loss: 0.778 location_date_sensor = 1 [n = 8]: weight: 0.025 loss: 0.569 location_date_sensor = 2 [n = 12]: weight: 0.042 loss: 0.713 location_date_sensor = 3 [n = 10]: weight: 0.047 loss: 0.775 location_date_sensor = 4 [n = 11]: weight: 0.053 loss: 0.862 location_date_sensor = 5 [n = 10]: weight: 0.039 loss: 0.616 location_date_sensor = 6 [n = 9]: weight: 0.044 loss: 0.742 location_date_sensor = 7 [n = 8]: weight: 0.098 loss: 1.004 location_date_sensor = 8 [n = 6]: weight: 0.050 loss: 0.913 location_date_sensor = 9 [n = 12]: weight: 0.099 loss: 0.864 location_date_sensor = 10 [n = 12]: weight: 0.059 loss: 0.938 location_date_sensor = 11 [n = 12]: weight: 0.063 loss: 0.878 location_date_sensor = 12 [n = 16]: weight: 0.041 loss: 0.736 location_date_sensor = 13 [n = 18]: weight: 0.076 loss: 0.930 location_date_sensor = 14 [n = 11]: weight: 0.067 loss: 0.947 location_date_sensor = 15 [n = 12]: weight: 0.062 loss: 0.961 location_date_sensor = 16 [n = 13]: weight: 0.050 loss: 0.859 location_date_sensor = 17 [n = 9]: weight: 0.031 loss: 0.623 16% 149/915 [03:48<19:29, 1.53s/it]objective: 0.165 loss_avg: 0.792 location_date_sensor = 0 [n = 8]: weight: 0.054 loss: 1.057 location_date_sensor = 1 [n = 11]: weight: 0.023 loss: 0.469 location_date_sensor = 2 [n = 12]: weight: 0.042 loss: 0.734 location_date_sensor = 3 [n = 11]: weight: 0.047 loss: 0.798 location_date_sensor = 4 [n = 7]: weight: 0.053 loss: 0.756 location_date_sensor = 5 [n = 9]: weight: 0.038 loss: 0.541 location_date_sensor = 6 [n = 12]: weight: 0.044 loss: 0.727 location_date_sensor = 7 [n = 7]: weight: 0.096 loss: 0.879 location_date_sensor = 8 [n = 13]: weight: 0.049 loss: 0.789 location_date_sensor = 9 [n = 11]: weight: 0.098 loss: 0.842 location_date_sensor = 10 [n = 8]: weight: 0.059 loss: 0.907 location_date_sensor = 11 [n = 20]: weight: 0.066 loss: 0.910 location_date_sensor = 12 [n = 11]: weight: 0.042 loss: 0.752 location_date_sensor = 13 [n = 7]: weight: 0.077 loss: 1.037 location_date_sensor = 14 [n = 7]: weight: 0.067 loss: 0.909 location_date_sensor = 15 [n = 12]: weight: 0.064 loss: 0.926 location_date_sensor = 16 [n = 20]: weight: 0.052 loss: 0.766 location_date_sensor = 17 [n = 14]: weight: 0.031 loss: 0.631 22% 199/915 [05:04<18:12, 1.53s/it]objective: 0.182 loss_avg: 0.817 location_date_sensor = 0 [n = 5]: weight: 0.055 loss: 1.292 location_date_sensor = 1 [n = 13]: weight: 0.023 loss: 0.464 location_date_sensor = 2 [n = 8]: weight: 0.042 loss: 0.735 location_date_sensor = 3 [n = 8]: weight: 0.047 loss: 0.763 location_date_sensor = 4 [n = 11]: weight: 0.051 loss: 0.836 location_date_sensor = 5 [n = 14]: weight: 0.038 loss: 0.612 location_date_sensor = 6 [n = 9]: weight: 0.043 loss: 0.775 location_date_sensor = 7 [n = 12]: weight: 0.096 loss: 0.934 location_date_sensor = 8 [n = 11]: weight: 0.049 loss: 0.826 location_date_sensor = 9 [n = 13]: weight: 0.099 loss: 0.821 location_date_sensor = 10 [n = 12]: weight: 0.059 loss: 0.997 location_date_sensor = 11 [n = 10]: weight: 0.068 loss: 0.931 location_date_sensor = 12 [n = 5]: weight: 0.040 loss: 0.688 location_date_sensor = 13 [n = 9]: weight: 0.077 loss: 0.881 location_date_sensor = 14 [n = 12]: weight: 0.066 loss: 0.895 location_date_sensor = 15 [n = 19]: weight: 0.067 loss: 0.879 location_date_sensor = 16 [n = 18]: weight: 0.054 loss: 0.895 location_date_sensor = 17 [n = 11]: weight: 0.030 loss: 0.629 27% 249/915 [06:20<16:55, 1.53s/it]objective: 0.160 loss_avg: 0.797 location_date_sensor = 0 [n = 5]: weight: 0.053 loss: 0.687 location_date_sensor = 1 [n = 12]: weight: 0.022 loss: 0.536 location_date_sensor = 2 [n = 16]: weight: 0.042 loss: 0.657 location_date_sensor = 3 [n = 13]: weight: 0.046 loss: 0.813 location_date_sensor = 4 [n = 11]: weight: 0.052 loss: 0.797 location_date_sensor = 5 [n = 13]: weight: 0.038 loss: 0.735 location_date_sensor = 6 [n = 8]: weight: 0.043 loss: 0.781 location_date_sensor = 7 [n = 12]: weight: 0.096 loss: 0.973 location_date_sensor = 8 [n = 13]: weight: 0.051 loss: 0.854 location_date_sensor = 9 [n = 10]: weight: 0.101 loss: 0.893 location_date_sensor = 10 [n = 7]: weight: 0.059 loss: 0.953 location_date_sensor = 11 [n = 10]: weight: 0.067 loss: 0.925 location_date_sensor = 12 [n = 10]: weight: 0.039 loss: 0.726 location_date_sensor = 13 [n = 12]: weight: 0.076 loss: 0.909 location_date_sensor = 14 [n = 7]: weight: 0.065 loss: 0.878 location_date_sensor = 15 [n = 9]: weight: 0.067 loss: 0.939 location_date_sensor = 16 [n = 16]: weight: 0.056 loss: 0.801 location_date_sensor = 17 [n = 16]: weight: 0.031 loss: 0.664 33% 299/915 [07:37<15:40, 1.53s/it]objective: 0.181 loss_avg: 0.810 location_date_sensor = 0 [n = 12]: weight: 0.052 loss: 1.013 location_date_sensor = 1 [n = 7]: weight: 0.022 loss: 0.584 location_date_sensor = 2 [n = 8]: weight: 0.042 loss: 0.625 location_date_sensor = 3 [n = 13]: weight: 0.046 loss: 0.723 location_date_sensor = 4 [n = 13]: weight: 0.052 loss: 0.827 location_date_sensor = 5 [n = 9]: weight: 0.037 loss: 0.555 location_date_sensor = 6 [n = 8]: weight: 0.041 loss: 0.662 location_date_sensor = 7 [n = 11]: weight: 0.097 loss: 0.978 location_date_sensor = 8 [n = 16]: weight: 0.052 loss: 0.796 location_date_sensor = 9 [n = 10]: weight: 0.100 loss: 0.824 location_date_sensor = 10 [n = 13]: weight: 0.060 loss: 0.932 location_date_sensor = 11 [n = 15]: weight: 0.068 loss: 0.889 location_date_sensor = 12 [n = 11]: weight: 0.039 loss: 0.758 location_date_sensor = 13 [n = 9]: weight: 0.077 loss: 0.932 location_date_sensor = 14 [n = 11]: weight: 0.065 loss: 0.915 location_date_sensor = 15 [n = 8]: weight: 0.066 loss: 0.926 location_date_sensor = 16 [n = 18]: weight: 0.058 loss: 0.783 location_date_sensor = 17 [n = 8]: weight: 0.030 loss: 0.606 38% 349/915 [08:53<14:24, 1.53s/it]objective: 0.174 loss_avg: 0.807 location_date_sensor = 0 [n = 13]: weight: 0.053 loss: 1.013 location_date_sensor = 1 [n = 16]: weight: 0.020 loss: 0.523 location_date_sensor = 2 [n = 9]: weight: 0.039 loss: 0.731 location_date_sensor = 3 [n = 7]: weight: 0.045 loss: 0.698 location_date_sensor = 4 [n = 10]: weight: 0.052 loss: 0.805 location_date_sensor = 5 [n = 11]: weight: 0.036 loss: 0.607 location_date_sensor = 6 [n = 8]: weight: 0.039 loss: 0.766 location_date_sensor = 7 [n = 15]: weight: 0.101 loss: 0.902 location_date_sensor = 8 [n = 12]: weight: 0.053 loss: 0.826 location_date_sensor = 9 [n = 9]: weight: 0.101 loss: 0.943 location_date_sensor = 10 [n = 9]: weight: 0.060 loss: 0.958 location_date_sensor = 11 [n = 11]: weight: 0.070 loss: 0.865 location_date_sensor = 12 [n = 16]: weight: 0.039 loss: 0.780 location_date_sensor = 13 [n = 12]: weight: 0.077 loss: 0.998 location_date_sensor = 14 [n = 11]: weight: 0.065 loss: 0.905 location_date_sensor = 15 [n = 11]: weight: 0.067 loss: 0.865 location_date_sensor = 16 [n = 8]: weight: 0.057 loss: 0.794 location_date_sensor = 17 [n = 12]: weight: 0.029 loss: 0.597 44% 399/915 [10:09<13:08, 1.53s/it]objective: 0.180 loss_avg: 0.790 location_date_sensor = 0 [n = 15]: weight: 0.054 loss: 0.784 location_date_sensor = 1 [n = 4]: weight: 0.019 loss: 0.588 location_date_sensor = 2 [n = 10]: weight: 0.039 loss: 0.651 location_date_sensor = 3 [n = 12]: weight: 0.044 loss: 0.684 location_date_sensor = 4 [n = 7]: weight: 0.050 loss: 0.790 location_date_sensor = 5 [n = 7]: weight: 0.034 loss: 0.703 location_date_sensor = 6 [n = 10]: weight: 0.039 loss: 0.734 location_date_sensor = 7 [n = 19]: weight: 0.105 loss: 0.808 location_date_sensor = 8 [n = 9]: weight: 0.052 loss: 0.765 location_date_sensor = 9 [n = 12]: weight: 0.100 loss: 0.808 location_date_sensor = 10 [n = 16]: weight: 0.062 loss: 0.952 location_date_sensor = 11 [n = 9]: weight: 0.069 loss: 0.840 location_date_sensor = 12 [n = 12]: weight: 0.039 loss: 0.726 location_date_sensor = 13 [n = 16]: weight: 0.079 loss: 0.848 location_date_sensor = 14 [n = 6]: weight: 0.064 loss: 0.943 location_date_sensor = 15 [n = 10]: weight: 0.067 loss: 0.871 location_date_sensor = 16 [n = 15]: weight: 0.058 loss: 0.861 location_date_sensor = 17 [n = 11]: weight: 0.028 loss: 0.647 49% 449/915 [11:26<11:52, 1.53s/it]objective: 0.153 loss_avg: 0.754 location_date_sensor = 0 [n = 5]: weight: 0.053 loss: 0.721 location_date_sensor = 1 [n = 13]: weight: 0.019 loss: 0.550 location_date_sensor = 2 [n = 12]: weight: 0.038 loss: 0.669 location_date_sensor = 3 [n = 8]: weight: 0.043 loss: 0.666 location_date_sensor = 4 [n = 12]: weight: 0.050 loss: 0.781 location_date_sensor = 5 [n = 13]: weight: 0.034 loss: 0.659 location_date_sensor = 6 [n = 8]: weight: 0.038 loss: 0.853 location_date_sensor = 7 [n = 10]: weight: 0.108 loss: 0.752 location_date_sensor = 8 [n = 11]: weight: 0.052 loss: 0.712 location_date_sensor = 9 [n = 12]: weight: 0.100 loss: 0.892 location_date_sensor = 10 [n = 6]: weight: 0.064 loss: 0.967 location_date_sensor = 11 [n = 9]: weight: 0.069 loss: 0.856 location_date_sensor = 12 [n = 15]: weight: 0.040 loss: 0.764 location_date_sensor = 13 [n = 11]: weight: 0.080 loss: 0.879 location_date_sensor = 14 [n = 14]: weight: 0.065 loss: 0.935 location_date_sensor = 15 [n = 10]: weight: 0.065 loss: 0.854 location_date_sensor = 16 [n = 10]: weight: 0.059 loss: 0.713 location_date_sensor = 17 [n = 21]: weight: 0.029 loss: 0.590 55% 499/915 [12:42<10:33, 1.52s/it]objective: 0.165 loss_avg: 0.776 location_date_sensor = 0 [n = 16]: weight: 0.052 loss: 0.817 location_date_sensor = 1 [n = 11]: weight: 0.019 loss: 0.520 location_date_sensor = 2 [n = 9]: weight: 0.038 loss: 0.626 location_date_sensor = 3 [n = 9]: weight: 0.041 loss: 0.662 location_date_sensor = 4 [n = 17]: weight: 0.052 loss: 0.785 location_date_sensor = 5 [n = 12]: weight: 0.034 loss: 0.593 location_date_sensor = 6 [n = 13]: weight: 0.037 loss: 0.715 location_date_sensor = 7 [n = 6]: weight: 0.105 loss: 0.873 location_date_sensor = 8 [n = 8]: weight: 0.051 loss: 0.707 location_date_sensor = 9 [n = 15]: weight: 0.103 loss: 0.826 location_date_sensor = 10 [n = 12]: weight: 0.062 loss: 0.885 location_date_sensor = 11 [n = 11]: weight: 0.069 loss: 0.860 location_date_sensor = 12 [n = 5]: weight: 0.039 loss: 0.761 location_date_sensor = 13 [n = 9]: weight: 0.081 loss: 0.882 location_date_sensor = 14 [n = 18]: weight: 0.069 loss: 0.907 location_date_sensor = 15 [n = 13]: weight: 0.065 loss: 0.907 location_date_sensor = 16 [n = 9]: weight: 0.059 loss: 0.839 location_date_sensor = 17 [n = 7]: weight: 0.028 loss: 0.601 60% 549/915 [13:58<09:18, 1.53s/it]objective: 0.177 loss_avg: 0.789 location_date_sensor = 0 [n = 15]: weight: 0.054 loss: 0.934 location_date_sensor = 1 [n = 8]: weight: 0.018 loss: 0.592 location_date_sensor = 2 [n = 12]: weight: 0.036 loss: 0.687 location_date_sensor = 3 [n = 12]: weight: 0.040 loss: 0.677 location_date_sensor = 4 [n = 10]: weight: 0.053 loss: 0.804 location_date_sensor = 5 [n = 8]: weight: 0.033 loss: 0.585 location_date_sensor = 6 [n = 10]: weight: 0.037 loss: 0.745 location_date_sensor = 7 [n = 8]: weight: 0.102 loss: 0.862 location_date_sensor = 8 [n = 8]: weight: 0.049 loss: 0.795 location_date_sensor = 9 [n = 12]: weight: 0.103 loss: 0.827 location_date_sensor = 10 [n = 13]: weight: 0.063 loss: 0.987 location_date_sensor = 11 [n = 13]: weight: 0.070 loss: 0.789 location_date_sensor = 12 [n = 10]: weight: 0.039 loss: 0.722 location_date_sensor = 13 [n = 17]: weight: 0.084 loss: 0.855 location_date_sensor = 14 [n = 11]: weight: 0.071 loss: 0.825 location_date_sensor = 15 [n = 10]: weight: 0.065 loss: 0.905 location_date_sensor = 16 [n = 8]: weight: 0.058 loss: 0.875 location_date_sensor = 17 [n = 15]: weight: 0.028 loss: 0.626 65% 599/915 [15:15<08:00, 1.52s/it]objective: 0.165 loss_avg: 0.777 location_date_sensor = 0 [n = 13]: weight: 0.056 loss: 0.793 location_date_sensor = 1 [n = 9]: weight: 0.017 loss: 0.570 location_date_sensor = 2 [n = 8]: weight: 0.036 loss: 0.677 location_date_sensor = 3 [n = 10]: weight: 0.040 loss: 0.706 location_date_sensor = 4 [n = 13]: weight: 0.053 loss: 0.737 location_date_sensor = 5 [n = 13]: weight: 0.032 loss: 0.818 location_date_sensor = 6 [n = 18]: weight: 0.037 loss: 0.786 location_date_sensor = 7 [n = 14]: weight: 0.104 loss: 0.854 location_date_sensor = 8 [n = 5]: weight: 0.047 loss: 0.779 location_date_sensor = 9 [n = 12]: weight: 0.104 loss: 0.762 location_date_sensor = 10 [n = 5]: weight: 0.063 loss: 0.905 location_date_sensor = 11 [n = 13]: weight: 0.071 loss: 0.786 location_date_sensor = 12 [n = 10]: weight: 0.038 loss: 0.755 location_date_sensor = 13 [n = 16]: weight: 0.087 loss: 0.877 location_date_sensor = 14 [n = 7]: weight: 0.069 loss: 0.908 location_date_sensor = 15 [n = 11]: weight: 0.065 loss: 0.935 location_date_sensor = 16 [n = 11]: weight: 0.056 loss: 0.715 location_date_sensor = 17 [n = 12]: weight: 0.028 loss: 0.614 71% 649/915 [16:31<06:46, 1.53s/it]objective: 0.167 loss_avg: 0.754 location_date_sensor = 0 [n = 17]: weight: 0.056 loss: 0.838 location_date_sensor = 1 [n = 13]: weight: 0.017 loss: 0.555 location_date_sensor = 2 [n = 15]: weight: 0.035 loss: 0.663 location_date_sensor = 3 [n = 9]: weight: 0.039 loss: 0.707 location_date_sensor = 4 [n = 10]: weight: 0.052 loss: 0.763 location_date_sensor = 5 [n = 7]: weight: 0.032 loss: 0.542 location_date_sensor = 6 [n = 11]: weight: 0.038 loss: 0.690 location_date_sensor = 7 [n = 14]: weight: 0.106 loss: 0.853 location_date_sensor = 8 [n = 12]: weight: 0.047 loss: 0.761 location_date_sensor = 9 [n = 12]: weight: 0.104 loss: 0.800 location_date_sensor = 10 [n = 13]: weight: 0.063 loss: 0.952 location_date_sensor = 11 [n = 3]: weight: 0.070 loss: 0.708 location_date_sensor = 12 [n = 10]: weight: 0.038 loss: 0.737 location_date_sensor = 13 [n = 11]: weight: 0.089 loss: 0.864 location_date_sensor = 14 [n = 5]: weight: 0.068 loss: 0.867 location_date_sensor = 15 [n = 11]: weight: 0.066 loss: 0.836 location_date_sensor = 16 [n = 13]: weight: 0.057 loss: 0.724 location_date_sensor = 17 [n = 14]: weight: 0.028 loss: 0.643 76% 699/915 [17:47<05:29, 1.53s/it]objective: 0.169 loss_avg: 0.769 location_date_sensor = 0 [n = 19]: weight: 0.060 loss: 0.924 location_date_sensor = 1 [n = 9]: weight: 0.016 loss: 0.560 location_date_sensor = 2 [n = 10]: weight: 0.035 loss: 0.652 location_date_sensor = 3 [n = 11]: weight: 0.039 loss: 0.662 location_date_sensor = 4 [n = 11]: weight: 0.051 loss: 0.783 location_date_sensor = 5 [n = 10]: weight: 0.031 loss: 0.558 location_date_sensor = 6 [n = 8]: weight: 0.038 loss: 0.798 location_date_sensor = 7 [n = 14]: weight: 0.108 loss: 0.820 location_date_sensor = 8 [n = 10]: weight: 0.047 loss: 0.718 location_date_sensor = 9 [n = 7]: weight: 0.102 loss: 0.804 location_date_sensor = 10 [n = 10]: weight: 0.064 loss: 0.885 location_date_sensor = 11 [n = 10]: weight: 0.066 loss: 0.809 location_date_sensor = 12 [n = 12]: weight: 0.037 loss: 0.642 location_date_sensor = 13 [n = 15]: weight: 0.093 loss: 0.885 location_date_sensor = 14 [n = 9]: weight: 0.067 loss: 0.977 location_date_sensor = 15 [n = 10]: weight: 0.065 loss: 0.821 location_date_sensor = 16 [n = 15]: weight: 0.056 loss: 0.731 location_date_sensor = 17 [n = 10]: weight: 0.027 loss: 0.659 82% 749/915 [19:04<04:14, 1.53s/it]objective: 0.172 loss_avg: 0.752 location_date_sensor = 0 [n = 9]: weight: 0.063 loss: 0.789 location_date_sensor = 1 [n = 11]: weight: 0.016 loss: 0.559 location_date_sensor = 2 [n = 12]: weight: 0.034 loss: 0.697 location_date_sensor = 3 [n = 5]: weight: 0.036 loss: 0.713 location_date_sensor = 4 [n = 11]: weight: 0.051 loss: 0.711 location_date_sensor = 5 [n = 9]: weight: 0.029 loss: 0.600 location_date_sensor = 6 [n = 15]: weight: 0.037 loss: 0.707 location_date_sensor = 7 [n = 12]: weight: 0.112 loss: 0.799 location_date_sensor = 8 [n = 18]: weight: 0.047 loss: 0.751 location_date_sensor = 9 [n = 12]: weight: 0.102 loss: 0.773 location_date_sensor = 10 [n = 13]: weight: 0.065 loss: 0.866 location_date_sensor = 11 [n = 12]: weight: 0.066 loss: 0.805 location_date_sensor = 12 [n = 9]: weight: 0.036 loss: 0.778 location_date_sensor = 13 [n = 16]: weight: 0.096 loss: 0.860 location_date_sensor = 14 [n = 9]: weight: 0.066 loss: 0.929 location_date_sensor = 15 [n = 7]: weight: 0.064 loss: 0.880 location_date_sensor = 16 [n = 14]: weight: 0.056 loss: 0.674 location_date_sensor = 17 [n = 6]: weight: 0.026 loss: 0.575 87% 799/915 [20:20<02:57, 1.53s/it]objective: 0.152 loss_avg: 0.718 location_date_sensor = 0 [n = 10]: weight: 0.062 loss: 0.692 location_date_sensor = 1 [n = 12]: weight: 0.016 loss: 0.485 location_date_sensor = 2 [n = 8]: weight: 0.034 loss: 0.637 location_date_sensor = 3 [n = 12]: weight: 0.036 loss: 0.616 location_date_sensor = 4 [n = 15]: weight: 0.052 loss: 0.718 location_date_sensor = 5 [n = 11]: weight: 0.028 loss: 0.580 location_date_sensor = 6 [n = 14]: weight: 0.038 loss: 0.744 location_date_sensor = 7 [n = 10]: weight: 0.112 loss: 0.700 location_date_sensor = 8 [n = 9]: weight: 0.048 loss: 0.740 location_date_sensor = 9 [n = 14]: weight: 0.102 loss: 0.761 location_date_sensor = 10 [n = 10]: weight: 0.066 loss: 0.852 location_date_sensor = 11 [n = 11]: weight: 0.066 loss: 0.739 location_date_sensor = 12 [n = 10]: weight: 0.036 loss: 0.743 location_date_sensor = 13 [n = 8]: weight: 0.096 loss: 0.844 location_date_sensor = 14 [n = 16]: weight: 0.066 loss: 0.877 location_date_sensor = 15 [n = 13]: weight: 0.064 loss: 0.842 location_date_sensor = 16 [n = 4]: weight: 0.054 loss: 0.692 location_date_sensor = 17 [n = 13]: weight: 0.026 loss: 0.613 93% 849/915 [21:36<01:40, 1.53s/it]objective: 0.171 loss_avg: 0.767 location_date_sensor = 0 [n = 13]: weight: 0.062 loss: 0.694 location_date_sensor = 1 [n = 9]: weight: 0.015 loss: 0.506 location_date_sensor = 2 [n = 2]: weight: 0.032 loss: 0.655 location_date_sensor = 3 [n = 11]: weight: 0.035 loss: 0.643 location_date_sensor = 4 [n = 10]: weight: 0.051 loss: 0.744 location_date_sensor = 5 [n = 12]: weight: 0.028 loss: 0.611 location_date_sensor = 6 [n = 10]: weight: 0.039 loss: 0.815 location_date_sensor = 7 [n = 11]: weight: 0.110 loss: 0.772 location_date_sensor = 8 [n = 10]: weight: 0.047 loss: 0.706 location_date_sensor = 9 [n = 10]: weight: 0.103 loss: 0.827 location_date_sensor = 10 [n = 12]: weight: 0.066 loss: 0.894 location_date_sensor = 11 [n = 15]: weight: 0.066 loss: 0.764 location_date_sensor = 12 [n = 12]: weight: 0.036 loss: 0.728 location_date_sensor = 13 [n = 13]: weight: 0.098 loss: 0.926 location_date_sensor = 14 [n = 14]: weight: 0.069 loss: 0.910 location_date_sensor = 15 [n = 17]: weight: 0.067 loss: 0.914 location_date_sensor = 16 [n = 9]: weight: 0.053 loss: 0.847 location_date_sensor = 17 [n = 10]: weight: 0.025 loss: 0.592 98% 899/915 [22:53<00:24, 1.53s/it]objective: 0.171 loss_avg: 0.763 location_date_sensor = 0 [n = 12]: weight: 0.062 loss: 0.832 location_date_sensor = 1 [n = 11]: weight: 0.014 loss: 0.469 location_date_sensor = 2 [n = 14]: weight: 0.031 loss: 0.653 location_date_sensor = 3 [n = 8]: weight: 0.035 loss: 0.690 location_date_sensor = 4 [n = 16]: weight: 0.052 loss: 0.747 location_date_sensor = 5 [n = 6]: weight: 0.028 loss: 0.608 location_date_sensor = 6 [n = 10]: weight: 0.039 loss: 0.847 location_date_sensor = 7 [n = 18]: weight: 0.113 loss: 0.805 location_date_sensor = 8 [n = 9]: weight: 0.046 loss: 0.801 location_date_sensor = 9 [n = 9]: weight: 0.100 loss: 0.812 location_date_sensor = 10 [n = 12]: weight: 0.067 loss: 0.849 location_date_sensor = 11 [n = 9]: weight: 0.065 loss: 0.732 location_date_sensor = 12 [n = 14]: weight: 0.036 loss: 0.779 location_date_sensor = 13 [n = 12]: weight: 0.101 loss: 0.955 location_date_sensor = 14 [n = 6]: weight: 0.068 loss: 0.844 location_date_sensor = 15 [n = 12]: weight: 0.070 loss: 0.904 location_date_sensor = 16 [n = 10]: weight: 0.052 loss: 0.725 location_date_sensor = 17 [n = 12]: weight: 0.025 loss: 0.611 100% 915/915 [23:16<00:00, 1.53s/it] objective: 0.123 loss_avg: 0.684 location_date_sensor = 0 [n = 3]: weight: 0.062 loss: 0.680 location_date_sensor = 1 [n = 6]: weight: 0.014 loss: 0.499 location_date_sensor = 2 [n = 5]: weight: 0.031 loss: 0.705 location_date_sensor = 3 [n = 4]: weight: 0.034 loss: 0.653 location_date_sensor = 4 [n = 3]: weight: 0.052 loss: 0.794 location_date_sensor = 5 [n = 6]: weight: 0.027 loss: 0.547 location_date_sensor = 6 [n = 2]: weight: 0.039 loss: 0.693 location_date_sensor = 7 [n = 1]: weight: 0.116 loss: 0.649 location_date_sensor = 8 [n = 1]: weight: 0.046 loss: 0.695 location_date_sensor = 9 [n = 4]: weight: 0.099 loss: 0.760 location_date_sensor = 10 [n = 3]: weight: 0.068 loss: 0.917 location_date_sensor = 11 [n = 3]: weight: 0.065 loss: 0.774 location_date_sensor = 12 [n = 4]: weight: 0.037 loss: 0.707 location_date_sensor = 13 [n = 1]: weight: 0.101 loss: 0.844 location_date_sensor = 14 [n = 2]: weight: 0.066 loss: 0.947 location_date_sensor = 15 [n = 3]: weight: 0.071 loss: 0.788 location_date_sensor = 16 [n = 2]: weight: 0.051 loss: 0.635 location_date_sensor = 17 [n = 4]: weight: 0.024 loss: 0.533 Epoch eval: Average detection_acc: 0.722 location_date_sensor = 0 [n = 211]: detection_acc = 0.702 location_date_sensor = 1 [n = 194]: detection_acc = 0.878 location_date_sensor = 2 [n = 190]: detection_acc = 0.848 location_date_sensor = 3 [n = 188]: detection_acc = 0.768 location_date_sensor = 4 [n = 212]: detection_acc = 0.745 location_date_sensor = 5 [n = 192]: detection_acc = 0.771 location_date_sensor = 6 [n = 191]: detection_acc = 0.746 location_date_sensor = 7 [n = 211]: detection_acc = 0.657 location_date_sensor = 8 [n = 191]: detection_acc = 0.706 location_date_sensor = 9 [n = 213]: detection_acc = 0.593 location_date_sensor = 10 [n = 194]: detection_acc = 0.659 location_date_sensor = 11 [n = 211]: detection_acc = 0.608 location_date_sensor = 12 [n = 204]: detection_acc = 0.725 location_date_sensor = 13 [n = 225]: detection_acc = 0.707 location_date_sensor = 14 [n = 186]: detection_acc = 0.713 location_date_sensor = 15 [n = 205]: detection_acc = 0.754 location_date_sensor = 16 [n = 219]: detection_acc = 0.626 location_date_sensor = 17 [n = 220]: detection_acc = 0.818 Worst-group detection_acc: 0.593 Validation: 100% 348/348 [03:19<00:00, 1.75it/s] objective: 0.000 loss_avg: 1.000 location_date_sensor = 18 [n = 12]: weight: 0.000 loss: 1.000 location_date_sensor = 19 [n = 49]: weight: 0.000 loss: 1.000 location_date_sensor = 20 [n = 254]: weight: 0.000 loss: 1.000 location_date_sensor = 21 [n = 216]: weight: 0.000 loss: 1.000 location_date_sensor = 22 [n = 89]: weight: 0.000 loss: 1.000 location_date_sensor = 23 [n = 11]: weight: 0.000 loss: 1.000 location_date_sensor = 24 [n = 4]: weight: 0.000 loss: 1.000 location_date_sensor = 25 [n = 7]: weight: 0.000 loss: 1.000 location_date_sensor = 26 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 27 [n = 17]: weight: 0.000 loss: 1.000 location_date_sensor = 28 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 29 [n = 8]: weight: 0.000 loss: 1.000 location_date_sensor = 30 [n = 43]: weight: 0.000 loss: 1.000 location_date_sensor = 31 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 32 [n = 51]: weight: 0.000 loss: 1.000 location_date_sensor = 33 [n = 50]: weight: 0.000 loss: 1.000 location_date_sensor = 34 [n = 28]: weight: 0.000 loss: 1.000 location_date_sensor = 35 [n = 75]: weight: 0.000 loss: 1.000 location_date_sensor = 36 [n = 56]: weight: 0.000 loss: 1.000 location_date_sensor = 37 [n = 34]: weight: 0.000 loss: 1.000 location_date_sensor = 38 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 39 [n = 13]: weight: 0.000 loss: 1.000 location_date_sensor = 40 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 41 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 42 [n = 57]: weight: 0.000 loss: 1.000 location_date_sensor = 43 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 44 [n = 33]: weight: 0.000 loss: 1.000 location_date_sensor = 45 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 46 [n = 30]: weight: 0.000 loss: 1.000 Epoch eval: Average detection_acc: 0.009 location_date_sensor = 18 [n = 12]: detection_acc = 0.000 location_date_sensor = 19 [n = 49]: detection_acc = 0.020 location_date_sensor = 20 [n = 254]: detection_acc = 0.000 location_date_sensor = 21 [n = 216]: detection_acc = 0.000 location_date_sensor = 22 [n = 89]: detection_acc = 0.000 location_date_sensor = 23 [n = 11]: detection_acc = 0.000 location_date_sensor = 24 [n = 4]: detection_acc = 0.500 location_date_sensor = 25 [n = 7]: detection_acc = 0.286 location_date_sensor = 26 [n = 14]: detection_acc = 0.000 location_date_sensor = 27 [n = 17]: detection_acc = 0.059 location_date_sensor = 28 [n = 14]: detection_acc = 0.000 location_date_sensor = 29 [n = 8]: detection_acc = 0.000 location_date_sensor = 30 [n = 43]: detection_acc = 0.000 location_date_sensor = 31 [n = 55]: detection_acc = 0.000 location_date_sensor = 32 [n = 51]: detection_acc = 0.000 location_date_sensor = 33 [n = 50]: detection_acc = 0.000 location_date_sensor = 34 [n = 28]: detection_acc = 0.000 location_date_sensor = 35 [n = 75]: detection_acc = 0.040 location_date_sensor = 36 [n = 56]: detection_acc = 0.000 location_date_sensor = 37 [n = 34]: detection_acc = 0.000 location_date_sensor = 38 [n = 55]: detection_acc = 0.000 location_date_sensor = 39 [n = 13]: detection_acc = 0.000 location_date_sensor = 40 [n = 19]: detection_acc = 0.000 location_date_sensor = 41 [n = 19]: detection_acc = 0.000 location_date_sensor = 42 [n = 57]: detection_acc = 0.000 location_date_sensor = 43 [n = 39]: detection_acc = 0.000 location_date_sensor = 44 [n = 33]: detection_acc = 0.000 location_date_sensor = 45 [n = 39]: detection_acc = 0.026 location_date_sensor = 46 [n = 30]: detection_acc = 0.100 Worst-group detection_acc: 0.000 Validation detection_acc_avg: 0.009 Epoch 1 has the best validation performance so far. 100% 365/365 [03:28<00:00, 1.75it/s] Epoch [2]: Train: 5% 49/915 [01:15<22:02, 1.53s/it]objective: 0.159 loss_avg: 0.736 location_date_sensor = 0 [n = 8]: weight: 0.061 loss: 0.693 location_date_sensor = 1 [n = 10]: weight: 0.014 loss: 0.549 location_date_sensor = 2 [n = 14]: weight: 0.031 loss: 0.729 location_date_sensor = 3 [n = 12]: weight: 0.034 loss: 0.600 location_date_sensor = 4 [n = 14]: weight: 0.052 loss: 0.702 location_date_sensor = 5 [n = 10]: weight: 0.026 loss: 0.470 location_date_sensor = 6 [n = 8]: weight: 0.038 loss: 0.771 location_date_sensor = 7 [n = 8]: weight: 0.113 loss: 0.781 location_date_sensor = 8 [n = 11]: weight: 0.046 loss: 0.760 location_date_sensor = 9 [n = 12]: weight: 0.100 loss: 0.770 location_date_sensor = 10 [n = 13]: weight: 0.069 loss: 0.857 location_date_sensor = 11 [n = 8]: weight: 0.064 loss: 0.767 location_date_sensor = 12 [n = 11]: weight: 0.037 loss: 0.699 location_date_sensor = 13 [n = 13]: weight: 0.103 loss: 0.874 location_date_sensor = 14 [n = 10]: weight: 0.065 loss: 0.882 location_date_sensor = 15 [n = 8]: weight: 0.071 loss: 0.927 location_date_sensor = 16 [n = 20]: weight: 0.053 loss: 0.760 location_date_sensor = 17 [n = 10]: weight: 0.024 loss: 0.644 11% 99/915 [02:31<20:46, 1.53s/it]objective: 0.154 loss_avg: 0.719 location_date_sensor = 0 [n = 12]: weight: 0.061 loss: 0.714 location_date_sensor = 1 [n = 18]: weight: 0.014 loss: 0.534 location_date_sensor = 2 [n = 7]: weight: 0.031 loss: 0.634 location_date_sensor = 3 [n = 17]: weight: 0.034 loss: 0.623 location_date_sensor = 4 [n = 6]: weight: 0.052 loss: 0.773 location_date_sensor = 5 [n = 11]: weight: 0.026 loss: 0.551 location_date_sensor = 6 [n = 7]: weight: 0.037 loss: 0.647 location_date_sensor = 7 [n = 12]: weight: 0.113 loss: 0.759 location_date_sensor = 8 [n = 10]: weight: 0.045 loss: 0.671 location_date_sensor = 9 [n = 10]: weight: 0.102 loss: 0.786 location_date_sensor = 10 [n = 11]: weight: 0.070 loss: 0.941 location_date_sensor = 11 [n = 19]: weight: 0.064 loss: 0.686 location_date_sensor = 12 [n = 8]: weight: 0.036 loss: 0.723 location_date_sensor = 13 [n = 11]: weight: 0.104 loss: 0.875 location_date_sensor = 14 [n = 6]: weight: 0.066 loss: 0.902 location_date_sensor = 15 [n = 12]: weight: 0.071 loss: 0.859 location_date_sensor = 16 [n = 15]: weight: 0.055 loss: 0.772 location_date_sensor = 17 [n = 8]: weight: 0.024 loss: 0.692 16% 149/915 [03:47<19:29, 1.53s/it]objective: 0.160 loss_avg: 0.739 location_date_sensor = 0 [n = 10]: weight: 0.061 loss: 0.808 location_date_sensor = 1 [n = 9]: weight: 0.014 loss: 0.543 location_date_sensor = 2 [n = 13]: weight: 0.030 loss: 0.691 location_date_sensor = 3 [n = 8]: weight: 0.033 loss: 0.668 location_date_sensor = 4 [n = 10]: weight: 0.051 loss: 0.729 location_date_sensor = 5 [n = 13]: weight: 0.026 loss: 0.582 location_date_sensor = 6 [n = 4]: weight: 0.036 loss: 0.785 location_date_sensor = 7 [n = 11]: weight: 0.111 loss: 0.711 location_date_sensor = 8 [n = 17]: weight: 0.046 loss: 0.701 location_date_sensor = 9 [n = 17]: weight: 0.104 loss: 0.787 location_date_sensor = 10 [n = 14]: weight: 0.072 loss: 0.898 location_date_sensor = 11 [n = 15]: weight: 0.066 loss: 0.677 location_date_sensor = 12 [n = 5]: weight: 0.035 loss: 0.812 location_date_sensor = 13 [n = 9]: weight: 0.103 loss: 0.802 location_date_sensor = 14 [n = 12]: weight: 0.066 loss: 0.862 location_date_sensor = 15 [n = 15]: weight: 0.072 loss: 0.887 location_date_sensor = 16 [n = 10]: weight: 0.054 loss: 0.692 location_date_sensor = 17 [n = 8]: weight: 0.023 loss: 0.613 22% 199/915 [05:04<18:11, 1.52s/it]objective: 0.164 loss_avg: 0.734 location_date_sensor = 0 [n = 8]: weight: 0.060 loss: 0.643 location_date_sensor = 1 [n = 11]: weight: 0.014 loss: 0.587 location_date_sensor = 2 [n = 10]: weight: 0.030 loss: 0.613 location_date_sensor = 3 [n = 8]: weight: 0.032 loss: 0.584 location_date_sensor = 4 [n = 14]: weight: 0.051 loss: 0.765 location_date_sensor = 5 [n = 12]: weight: 0.025 loss: 0.656 location_date_sensor = 6 [n = 9]: weight: 0.035 loss: 0.693 location_date_sensor = 7 [n = 16]: weight: 0.113 loss: 0.844 location_date_sensor = 8 [n = 9]: weight: 0.046 loss: 0.716 location_date_sensor = 9 [n = 10]: weight: 0.107 loss: 0.756 location_date_sensor = 10 [n = 11]: weight: 0.073 loss: 0.809 location_date_sensor = 11 [n = 12]: weight: 0.066 loss: 0.708 location_date_sensor = 12 [n = 11]: weight: 0.034 loss: 0.781 location_date_sensor = 13 [n = 9]: weight: 0.102 loss: 0.851 location_date_sensor = 14 [n = 13]: weight: 0.066 loss: 0.858 location_date_sensor = 15 [n = 8]: weight: 0.074 loss: 0.824 location_date_sensor = 16 [n = 17]: weight: 0.054 loss: 0.775 location_date_sensor = 17 [n = 12]: weight: 0.022 loss: 0.624 27% 249/915 [06:20<17:00, 1.53s/it]objective: 0.161 loss_avg: 0.741 location_date_sensor = 0 [n = 13]: weight: 0.060 loss: 0.766 location_date_sensor = 1 [n = 12]: weight: 0.013 loss: 0.561 location_date_sensor = 2 [n = 15]: weight: 0.030 loss: 0.712 location_date_sensor = 3 [n = 12]: weight: 0.032 loss: 0.642 location_date_sensor = 4 [n = 12]: weight: 0.053 loss: 0.754 location_date_sensor = 5 [n = 7]: weight: 0.025 loss: 0.724 location_date_sensor = 6 [n = 10]: weight: 0.034 loss: 0.792 location_date_sensor = 7 [n = 12]: weight: 0.117 loss: 0.706 location_date_sensor = 8 [n = 21]: weight: 0.047 loss: 0.705 location_date_sensor = 9 [n = 7]: weight: 0.102 loss: 0.720 location_date_sensor = 10 [n = 11]: weight: 0.074 loss: 0.901 location_date_sensor = 11 [n = 4]: weight: 0.064 loss: 0.777 location_date_sensor = 12 [n = 9]: weight: 0.034 loss: 0.744 location_date_sensor = 13 [n = 11]: weight: 0.102 loss: 0.845 location_date_sensor = 14 [n = 15]: weight: 0.068 loss: 0.843 location_date_sensor = 15 [n = 10]: weight: 0.074 loss: 0.936 location_date_sensor = 16 [n = 5]: weight: 0.054 loss: 0.694 location_date_sensor = 17 [n = 14]: weight: 0.022 loss: 0.598 33% 299/915 [07:36<15:40, 1.53s/it]objective: 0.159 loss_avg: 0.732 location_date_sensor = 0 [n = 10]: weight: 0.059 loss: 0.648 location_date_sensor = 1 [n = 9]: weight: 0.013 loss: 0.550 location_date_sensor = 2 [n = 12]: weight: 0.030 loss: 0.676 location_date_sensor = 3 [n = 8]: weight: 0.031 loss: 0.629 location_date_sensor = 4 [n = 15]: weight: 0.053 loss: 0.716 location_date_sensor = 5 [n = 8]: weight: 0.024 loss: 0.810 location_date_sensor = 6 [n = 7]: weight: 0.034 loss: 0.768 location_date_sensor = 7 [n = 16]: weight: 0.117 loss: 0.770 location_date_sensor = 8 [n = 9]: weight: 0.047 loss: 0.741 location_date_sensor = 9 [n = 13]: weight: 0.103 loss: 0.716 location_date_sensor = 10 [n = 17]: weight: 0.077 loss: 0.930 location_date_sensor = 11 [n = 14]: weight: 0.063 loss: 0.659 location_date_sensor = 12 [n = 12]: weight: 0.034 loss: 0.670 location_date_sensor = 13 [n = 6]: weight: 0.100 loss: 0.807 location_date_sensor = 14 [n = 5]: weight: 0.068 loss: 0.928 location_date_sensor = 15 [n = 8]: weight: 0.073 loss: 0.864 location_date_sensor = 16 [n = 18]: weight: 0.054 loss: 0.757 location_date_sensor = 17 [n = 13]: weight: 0.022 loss: 0.597 38% 349/915 [08:53<14:20, 1.52s/it]objective: 0.150 loss_avg: 0.742 location_date_sensor = 0 [n = 11]: weight: 0.059 loss: 0.903 location_date_sensor = 1 [n = 13]: weight: 0.013 loss: 0.568 location_date_sensor = 2 [n = 13]: weight: 0.030 loss: 0.622 location_date_sensor = 3 [n = 17]: weight: 0.031 loss: 0.623 location_date_sensor = 4 [n = 11]: weight: 0.053 loss: 0.696 location_date_sensor = 5 [n = 9]: weight: 0.024 loss: 0.508 location_date_sensor = 6 [n = 12]: weight: 0.033 loss: 0.816 location_date_sensor = 7 [n = 6]: weight: 0.117 loss: 0.763 location_date_sensor = 8 [n = 5]: weight: 0.046 loss: 0.728 location_date_sensor = 9 [n = 11]: weight: 0.103 loss: 0.751 location_date_sensor = 10 [n = 7]: weight: 0.079 loss: 0.980 location_date_sensor = 11 [n = 7]: weight: 0.063 loss: 0.687 location_date_sensor = 12 [n = 16]: weight: 0.034 loss: 0.760 location_date_sensor = 13 [n = 12]: weight: 0.100 loss: 0.855 location_date_sensor = 14 [n = 12]: weight: 0.069 loss: 1.006 location_date_sensor = 15 [n = 13]: weight: 0.074 loss: 0.884 location_date_sensor = 16 [n = 13]: weight: 0.055 loss: 0.719 location_date_sensor = 17 [n = 12]: weight: 0.022 loss: 0.581 44% 399/915 [10:09<13:06, 1.52s/it]objective: 0.157 loss_avg: 0.718 location_date_sensor = 0 [n = 17]: weight: 0.060 loss: 0.748 location_date_sensor = 1 [n = 11]: weight: 0.013 loss: 0.578 location_date_sensor = 2 [n = 15]: weight: 0.030 loss: 0.656 location_date_sensor = 3 [n = 10]: weight: 0.031 loss: 0.547 location_date_sensor = 4 [n = 8]: weight: 0.053 loss: 0.731 location_date_sensor = 5 [n = 10]: weight: 0.023 loss: 0.733 location_date_sensor = 6 [n = 14]: weight: 0.033 loss: 0.694 location_date_sensor = 7 [n = 12]: weight: 0.116 loss: 0.715 location_date_sensor = 8 [n = 9]: weight: 0.045 loss: 0.694 location_date_sensor = 9 [n = 8]: weight: 0.102 loss: 0.742 location_date_sensor = 10 [n = 12]: weight: 0.078 loss: 0.865 location_date_sensor = 11 [n = 17]: weight: 0.063 loss: 0.712 location_date_sensor = 12 [n = 9]: weight: 0.034 loss: 0.691 location_date_sensor = 13 [n = 15]: weight: 0.101 loss: 0.817 location_date_sensor = 14 [n = 6]: weight: 0.069 loss: 0.897 location_date_sensor = 15 [n = 13]: weight: 0.076 loss: 0.826 location_date_sensor = 16 [n = 8]: weight: 0.055 loss: 0.615 location_date_sensor = 17 [n = 6]: weight: 0.021 loss: 0.605 49% 449/915 [11:26<11:53, 1.53s/it]objective: 0.142 loss_avg: 0.715 location_date_sensor = 0 [n = 8]: weight: 0.060 loss: 0.618 location_date_sensor = 1 [n = 7]: weight: 0.012 loss: 0.550 location_date_sensor = 2 [n = 12]: weight: 0.030 loss: 0.656 location_date_sensor = 3 [n = 8]: weight: 0.030 loss: 0.606 location_date_sensor = 4 [n = 12]: weight: 0.053 loss: 0.748 location_date_sensor = 5 [n = 9]: weight: 0.023 loss: 0.606 location_date_sensor = 6 [n = 7]: weight: 0.033 loss: 0.699 location_date_sensor = 7 [n = 2]: weight: 0.113 loss: 0.841 location_date_sensor = 8 [n = 14]: weight: 0.045 loss: 0.713 location_date_sensor = 9 [n = 13]: weight: 0.103 loss: 0.720 location_date_sensor = 10 [n = 10]: weight: 0.079 loss: 0.829 location_date_sensor = 11 [n = 16]: weight: 0.064 loss: 0.682 location_date_sensor = 12 [n = 18]: weight: 0.034 loss: 0.742 location_date_sensor = 13 [n = 9]: weight: 0.101 loss: 0.687 location_date_sensor = 14 [n = 10]: weight: 0.067 loss: 0.868 location_date_sensor = 15 [n = 12]: weight: 0.078 loss: 0.867 location_date_sensor = 16 [n = 13]: weight: 0.056 loss: 0.811 location_date_sensor = 17 [n = 20]: weight: 0.021 loss: 0.640 55% 499/915 [12:42<10:35, 1.53s/it]objective: 0.141 loss_avg: 0.685 location_date_sensor = 0 [n = 10]: weight: 0.060 loss: 0.678 location_date_sensor = 1 [n = 23]: weight: 0.012 loss: 0.530 location_date_sensor = 2 [n = 8]: weight: 0.030 loss: 0.540 location_date_sensor = 3 [n = 11]: weight: 0.029 loss: 0.637 location_date_sensor = 4 [n = 11]: weight: 0.053 loss: 0.675 location_date_sensor = 5 [n = 6]: weight: 0.022 loss: 0.657 location_date_sensor = 6 [n = 15]: weight: 0.033 loss: 0.747 location_date_sensor = 7 [n = 10]: weight: 0.110 loss: 0.651 location_date_sensor = 8 [n = 7]: weight: 0.044 loss: 0.611 location_date_sensor = 9 [n = 10]: weight: 0.102 loss: 0.702 location_date_sensor = 10 [n = 11]: weight: 0.079 loss: 0.830 location_date_sensor = 11 [n = 15]: weight: 0.065 loss: 0.677 location_date_sensor = 12 [n = 9]: weight: 0.035 loss: 0.721 location_date_sensor = 13 [n = 14]: weight: 0.102 loss: 0.775 location_date_sensor = 14 [n = 8]: weight: 0.067 loss: 0.857 location_date_sensor = 15 [n = 10]: weight: 0.078 loss: 0.843 location_date_sensor = 16 [n = 11]: weight: 0.057 loss: 0.740 location_date_sensor = 17 [n = 11]: weight: 0.022 loss: 0.567 60% 549/915 [13:58<09:20, 1.53s/it]objective: 0.160 loss_avg: 0.711 location_date_sensor = 0 [n = 3]: weight: 0.057 loss: 0.552 location_date_sensor = 1 [n = 11]: weight: 0.012 loss: 0.481 location_date_sensor = 2 [n = 12]: weight: 0.029 loss: 0.706 location_date_sensor = 3 [n = 10]: weight: 0.030 loss: 0.652 location_date_sensor = 4 [n = 15]: weight: 0.054 loss: 0.682 location_date_sensor = 5 [n = 6]: weight: 0.021 loss: 0.515 location_date_sensor = 6 [n = 10]: weight: 0.032 loss: 0.726 location_date_sensor = 7 [n = 14]: weight: 0.110 loss: 0.720 location_date_sensor = 8 [n = 17]: weight: 0.044 loss: 0.679 location_date_sensor = 9 [n = 13]: weight: 0.103 loss: 0.737 location_date_sensor = 10 [n = 10]: weight: 0.078 loss: 0.855 location_date_sensor = 11 [n = 9]: weight: 0.066 loss: 0.716 location_date_sensor = 12 [n = 11]: weight: 0.035 loss: 0.767 location_date_sensor = 13 [n = 10]: weight: 0.104 loss: 0.798 location_date_sensor = 14 [n = 14]: weight: 0.070 loss: 0.892 location_date_sensor = 15 [n = 10]: weight: 0.079 loss: 0.897 location_date_sensor = 16 [n = 12]: weight: 0.057 loss: 0.630 location_date_sensor = 17 [n = 13]: weight: 0.021 loss: 0.617 65% 599/915 [15:14<08:01, 1.52s/it]objective: 0.145 loss_avg: 0.708 location_date_sensor = 0 [n = 6]: weight: 0.056 loss: 0.596 location_date_sensor = 1 [n = 16]: weight: 0.012 loss: 0.512 location_date_sensor = 2 [n = 18]: weight: 0.030 loss: 0.600 location_date_sensor = 3 [n = 8]: weight: 0.029 loss: 0.630 location_date_sensor = 4 [n = 9]: weight: 0.053 loss: 0.697 location_date_sensor = 5 [n = 15]: weight: 0.021 loss: 0.690 location_date_sensor = 6 [n = 12]: weight: 0.032 loss: 0.734 location_date_sensor = 7 [n = 14]: weight: 0.113 loss: 0.758 location_date_sensor = 8 [n = 6]: weight: 0.044 loss: 0.624 location_date_sensor = 9 [n = 8]: weight: 0.103 loss: 0.694 location_date_sensor = 10 [n = 13]: weight: 0.081 loss: 0.839 location_date_sensor = 11 [n = 16]: weight: 0.066 loss: 0.644 location_date_sensor = 12 [n = 9]: weight: 0.035 loss: 0.740 location_date_sensor = 13 [n = 8]: weight: 0.101 loss: 0.773 location_date_sensor = 14 [n = 10]: weight: 0.071 loss: 0.822 location_date_sensor = 15 [n = 15]: weight: 0.081 loss: 0.889 location_date_sensor = 16 [n = 7]: weight: 0.054 loss: 0.829 location_date_sensor = 17 [n = 10]: weight: 0.021 loss: 0.721 71% 649/915 [16:31<06:46, 1.53s/it]objective: 0.145 loss_avg: 0.705 location_date_sensor = 0 [n = 10]: weight: 0.054 loss: 0.736 location_date_sensor = 1 [n = 11]: weight: 0.012 loss: 0.580 location_date_sensor = 2 [n = 13]: weight: 0.030 loss: 0.614 location_date_sensor = 3 [n = 6]: weight: 0.028 loss: 0.665 location_date_sensor = 4 [n = 11]: weight: 0.053 loss: 0.712 location_date_sensor = 5 [n = 14]: weight: 0.021 loss: 0.667 location_date_sensor = 6 [n = 12]: weight: 0.032 loss: 0.655 location_date_sensor = 7 [n = 13]: weight: 0.115 loss: 0.684 location_date_sensor = 8 [n = 13]: weight: 0.043 loss: 0.704 location_date_sensor = 9 [n = 9]: weight: 0.103 loss: 0.776 location_date_sensor = 10 [n = 11]: weight: 0.082 loss: 0.854 location_date_sensor = 11 [n = 9]: weight: 0.065 loss: 0.646 location_date_sensor = 12 [n = 6]: weight: 0.034 loss: 0.804 location_date_sensor = 13 [n = 11]: weight: 0.100 loss: 0.835 location_date_sensor = 14 [n = 14]: weight: 0.073 loss: 0.853 location_date_sensor = 15 [n = 9]: weight: 0.082 loss: 0.841 location_date_sensor = 16 [n = 10]: weight: 0.054 loss: 0.630 location_date_sensor = 17 [n = 18]: weight: 0.021 loss: 0.564 76% 699/915 [17:47<05:29, 1.52s/it]objective: 0.140 loss_avg: 0.703 location_date_sensor = 0 [n = 9]: weight: 0.053 loss: 0.695 location_date_sensor = 1 [n = 10]: weight: 0.012 loss: 0.536 location_date_sensor = 2 [n = 11]: weight: 0.030 loss: 0.606 location_date_sensor = 3 [n = 17]: weight: 0.028 loss: 0.657 location_date_sensor = 4 [n = 8]: weight: 0.053 loss: 0.645 location_date_sensor = 5 [n = 13]: weight: 0.021 loss: 0.752 location_date_sensor = 6 [n = 9]: weight: 0.032 loss: 0.685 location_date_sensor = 7 [n = 8]: weight: 0.114 loss: 0.629 location_date_sensor = 8 [n = 8]: weight: 0.042 loss: 0.694 location_date_sensor = 9 [n = 8]: weight: 0.102 loss: 0.798 location_date_sensor = 10 [n = 9]: weight: 0.082 loss: 0.859 location_date_sensor = 11 [n = 9]: weight: 0.064 loss: 0.614 location_date_sensor = 12 [n = 12]: weight: 0.034 loss: 0.695 location_date_sensor = 13 [n = 11]: weight: 0.102 loss: 0.784 location_date_sensor = 14 [n = 8]: weight: 0.073 loss: 0.892 location_date_sensor = 15 [n = 17]: weight: 0.085 loss: 0.867 location_date_sensor = 16 [n = 14]: weight: 0.054 loss: 0.671 location_date_sensor = 17 [n = 19]: weight: 0.022 loss: 0.614 82% 749/915 [19:04<04:12, 1.52s/it]objective: 0.143 loss_avg: 0.705 location_date_sensor = 0 [n = 14]: weight: 0.054 loss: 0.800 location_date_sensor = 1 [n = 10]: weight: 0.012 loss: 0.472 location_date_sensor = 2 [n = 9]: weight: 0.029 loss: 0.642 location_date_sensor = 3 [n = 25]: weight: 0.029 loss: 0.668 location_date_sensor = 4 [n = 13]: weight: 0.053 loss: 0.704 location_date_sensor = 5 [n = 16]: weight: 0.022 loss: 0.583 location_date_sensor = 6 [n = 11]: weight: 0.032 loss: 0.713 location_date_sensor = 7 [n = 13]: weight: 0.114 loss: 0.660 location_date_sensor = 8 [n = 6]: weight: 0.042 loss: 0.664 location_date_sensor = 9 [n = 6]: weight: 0.099 loss: 0.720 location_date_sensor = 10 [n = 12]: weight: 0.082 loss: 0.845 location_date_sensor = 11 [n = 13]: weight: 0.063 loss: 0.668 location_date_sensor = 12 [n = 7]: weight: 0.034 loss: 0.690 location_date_sensor = 13 [n = 10]: weight: 0.103 loss: 0.785 location_date_sensor = 14 [n = 13]: weight: 0.074 loss: 0.881 location_date_sensor = 15 [n = 8]: weight: 0.087 loss: 0.844 location_date_sensor = 16 [n = 4]: weight: 0.053 loss: 0.830 location_date_sensor = 17 [n = 10]: weight: 0.022 loss: 0.636 87% 799/915 [20:20<02:57, 1.53s/it]objective: 0.146 loss_avg: 0.695 location_date_sensor = 0 [n = 14]: weight: 0.056 loss: 0.681 location_date_sensor = 1 [n = 7]: weight: 0.011 loss: 0.521 location_date_sensor = 2 [n = 15]: weight: 0.029 loss: 0.637 location_date_sensor = 3 [n = 9]: weight: 0.030 loss: 0.592 location_date_sensor = 4 [n = 5]: weight: 0.052 loss: 0.602 location_date_sensor = 5 [n = 11]: weight: 0.021 loss: 0.437 location_date_sensor = 6 [n = 11]: weight: 0.031 loss: 0.739 location_date_sensor = 7 [n = 12]: weight: 0.113 loss: 0.688 location_date_sensor = 8 [n = 14]: weight: 0.041 loss: 0.683 location_date_sensor = 9 [n = 14]: weight: 0.099 loss: 0.829 location_date_sensor = 10 [n = 12]: weight: 0.084 loss: 0.802 location_date_sensor = 11 [n = 10]: weight: 0.063 loss: 0.616 location_date_sensor = 12 [n = 14]: weight: 0.033 loss: 0.702 location_date_sensor = 13 [n = 9]: weight: 0.103 loss: 0.825 location_date_sensor = 14 [n = 11]: weight: 0.076 loss: 0.843 location_date_sensor = 15 [n = 11]: weight: 0.087 loss: 0.876 location_date_sensor = 16 [n = 10]: weight: 0.052 loss: 0.711 location_date_sensor = 17 [n = 11]: weight: 0.022 loss: 0.596 93% 849/915 [21:37<01:40, 1.53s/it]objective: 0.151 loss_avg: 0.693 location_date_sensor = 0 [n = 14]: weight: 0.056 loss: 0.607 location_date_sensor = 1 [n = 10]: weight: 0.011 loss: 0.551 location_date_sensor = 2 [n = 8]: weight: 0.029 loss: 0.659 location_date_sensor = 3 [n = 11]: weight: 0.030 loss: 0.585 location_date_sensor = 4 [n = 12]: weight: 0.052 loss: 0.641 location_date_sensor = 5 [n = 12]: weight: 0.021 loss: 0.655 location_date_sensor = 6 [n = 13]: weight: 0.032 loss: 0.770 location_date_sensor = 7 [n = 11]: weight: 0.110 loss: 0.712 location_date_sensor = 8 [n = 12]: weight: 0.041 loss: 0.642 location_date_sensor = 9 [n = 9]: weight: 0.097 loss: 0.679 location_date_sensor = 10 [n = 15]: weight: 0.087 loss: 0.812 location_date_sensor = 11 [n = 6]: weight: 0.060 loss: 0.625 location_date_sensor = 12 [n = 9]: weight: 0.033 loss: 0.706 location_date_sensor = 13 [n = 15]: weight: 0.103 loss: 0.795 location_date_sensor = 14 [n = 13]: weight: 0.077 loss: 0.832 location_date_sensor = 15 [n = 10]: weight: 0.088 loss: 0.811 location_date_sensor = 16 [n = 10]: weight: 0.052 loss: 0.681 location_date_sensor = 17 [n = 10]: weight: 0.021 loss: 0.580 98% 899/915 [22:53<00:24, 1.52s/it]objective: 0.148 loss_avg: 0.682 location_date_sensor = 0 [n = 8]: weight: 0.056 loss: 0.623 location_date_sensor = 1 [n = 11]: weight: 0.011 loss: 0.477 location_date_sensor = 2 [n = 12]: weight: 0.029 loss: 0.603 location_date_sensor = 3 [n = 16]: weight: 0.029 loss: 0.555 location_date_sensor = 4 [n = 12]: weight: 0.051 loss: 0.599 location_date_sensor = 5 [n = 9]: weight: 0.021 loss: 0.685 location_date_sensor = 6 [n = 11]: weight: 0.032 loss: 0.726 location_date_sensor = 7 [n = 5]: weight: 0.107 loss: 0.631 location_date_sensor = 8 [n = 10]: weight: 0.041 loss: 0.687 location_date_sensor = 9 [n = 11]: weight: 0.097 loss: 0.700 location_date_sensor = 10 [n = 14]: weight: 0.090 loss: 0.877 location_date_sensor = 11 [n = 15]: weight: 0.060 loss: 0.613 location_date_sensor = 12 [n = 9]: weight: 0.032 loss: 0.756 location_date_sensor = 13 [n = 9]: weight: 0.103 loss: 0.782 location_date_sensor = 14 [n = 10]: weight: 0.080 loss: 0.875 location_date_sensor = 15 [n = 13]: weight: 0.091 loss: 0.829 location_date_sensor = 16 [n = 14]: weight: 0.052 loss: 0.702 location_date_sensor = 17 [n = 11]: weight: 0.021 loss: 0.582 100% 915/915 [23:16<00:00, 1.53s/it] objective: 0.164 loss_avg: 0.704 location_date_sensor = 0 [n = 1]: weight: 0.054 loss: 0.649 location_date_sensor = 1 [n = 3]: weight: 0.010 loss: 0.561 location_date_sensor = 2 [n = 1]: weight: 0.029 loss: 0.662 location_date_sensor = 3 [n = 4]: weight: 0.029 loss: 0.598 location_date_sensor = 4 [n = 2]: weight: 0.051 loss: 0.646 location_date_sensor = 5 [n = 3]: weight: 0.021 loss: 0.672 location_date_sensor = 6 [n = 4]: weight: 0.032 loss: 0.791 location_date_sensor = 7 [n = 8]: weight: 0.107 loss: 0.645 location_date_sensor = 8 [n = 5]: weight: 0.041 loss: 0.647 location_date_sensor = 9 [n = 5]: weight: 0.097 loss: 0.697 location_date_sensor = 10 [n = 2]: weight: 0.093 loss: 1.099 location_date_sensor = 11 [n = 2]: weight: 0.059 loss: 0.755 location_date_sensor = 12 [n = 4]: weight: 0.032 loss: 0.692 location_date_sensor = 13 [n = 2]: weight: 0.103 loss: 0.696 location_date_sensor = 14 [n = 5]: weight: 0.079 loss: 0.883 location_date_sensor = 15 [n = 1]: weight: 0.091 loss: 0.797 location_date_sensor = 16 [n = 3]: weight: 0.053 loss: 0.685 location_date_sensor = 17 [n = 2]: weight: 0.021 loss: 0.635 Epoch eval: Average detection_acc: 0.753 location_date_sensor = 0 [n = 186]: detection_acc = 0.747 location_date_sensor = 1 [n = 212]: detection_acc = 0.864 location_date_sensor = 2 [n = 218]: detection_acc = 0.859 location_date_sensor = 3 [n = 217]: detection_acc = 0.804 location_date_sensor = 4 [n = 200]: detection_acc = 0.784 location_date_sensor = 5 [n = 194]: detection_acc = 0.756 location_date_sensor = 6 [n = 186]: detection_acc = 0.752 location_date_sensor = 7 [n = 203]: detection_acc = 0.726 location_date_sensor = 8 [n = 203]: detection_acc = 0.743 location_date_sensor = 9 [n = 194]: detection_acc = 0.623 location_date_sensor = 10 [n = 215]: detection_acc = 0.717 location_date_sensor = 11 [n = 216]: detection_acc = 0.688 location_date_sensor = 12 [n = 189]: detection_acc = 0.745 location_date_sensor = 13 [n = 194]: detection_acc = 0.748 location_date_sensor = 14 [n = 195]: detection_acc = 0.736 location_date_sensor = 15 [n = 203]: detection_acc = 0.775 location_date_sensor = 16 [n = 214]: detection_acc = 0.668 location_date_sensor = 17 [n = 218]: detection_acc = 0.814 Worst-group detection_acc: 0.623 Validation: 100% 348/348 [03:19<00:00, 1.74it/s] objective: 0.000 loss_avg: 1.000 location_date_sensor = 18 [n = 12]: weight: 0.000 loss: 1.000 location_date_sensor = 19 [n = 49]: weight: 0.000 loss: 1.000 location_date_sensor = 20 [n = 254]: weight: 0.000 loss: 1.000 location_date_sensor = 21 [n = 216]: weight: 0.000 loss: 1.000 location_date_sensor = 22 [n = 89]: weight: 0.000 loss: 1.000 location_date_sensor = 23 [n = 11]: weight: 0.000 loss: 1.000 location_date_sensor = 24 [n = 4]: weight: 0.000 loss: 1.000 location_date_sensor = 25 [n = 7]: weight: 0.000 loss: 1.000 location_date_sensor = 26 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 27 [n = 17]: weight: 0.000 loss: 1.000 location_date_sensor = 28 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 29 [n = 8]: weight: 0.000 loss: 1.000 location_date_sensor = 30 [n = 43]: weight: 0.000 loss: 1.000 location_date_sensor = 31 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 32 [n = 51]: weight: 0.000 loss: 1.000 location_date_sensor = 33 [n = 50]: weight: 0.000 loss: 1.000 location_date_sensor = 34 [n = 28]: weight: 0.000 loss: 1.000 location_date_sensor = 35 [n = 75]: weight: 0.000 loss: 1.000 location_date_sensor = 36 [n = 56]: weight: 0.000 loss: 1.000 location_date_sensor = 37 [n = 34]: weight: 0.000 loss: 1.000 location_date_sensor = 38 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 39 [n = 13]: weight: 0.000 loss: 1.000 location_date_sensor = 40 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 41 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 42 [n = 57]: weight: 0.000 loss: 1.000 location_date_sensor = 43 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 44 [n = 33]: weight: 0.000 loss: 1.000 location_date_sensor = 45 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 46 [n = 30]: weight: 0.000 loss: 1.000 Epoch eval: Average detection_acc: 0.014 location_date_sensor = 18 [n = 12]: detection_acc = 0.000 location_date_sensor = 19 [n = 49]: detection_acc = 0.020 location_date_sensor = 20 [n = 254]: detection_acc = 0.000 location_date_sensor = 21 [n = 216]: detection_acc = 0.000 location_date_sensor = 22 [n = 89]: detection_acc = 0.000 location_date_sensor = 23 [n = 11]: detection_acc = 0.000 location_date_sensor = 24 [n = 4]: detection_acc = 0.500 location_date_sensor = 25 [n = 7]: detection_acc = 0.143 location_date_sensor = 26 [n = 14]: detection_acc = 0.071 location_date_sensor = 27 [n = 17]: detection_acc = 0.059 location_date_sensor = 28 [n = 14]: detection_acc = 0.000 location_date_sensor = 29 [n = 8]: detection_acc = 0.000 location_date_sensor = 30 [n = 43]: detection_acc = 0.000 location_date_sensor = 31 [n = 55]: detection_acc = 0.000 location_date_sensor = 32 [n = 51]: detection_acc = 0.000 location_date_sensor = 33 [n = 50]: detection_acc = 0.000 location_date_sensor = 34 [n = 28]: detection_acc = 0.000 location_date_sensor = 35 [n = 75]: detection_acc = 0.040 location_date_sensor = 36 [n = 56]: detection_acc = 0.054 location_date_sensor = 37 [n = 34]: detection_acc = 0.029 location_date_sensor = 38 [n = 55]: detection_acc = 0.000 location_date_sensor = 39 [n = 13]: detection_acc = 0.000 location_date_sensor = 40 [n = 19]: detection_acc = 0.000 location_date_sensor = 41 [n = 19]: detection_acc = 0.000 location_date_sensor = 42 [n = 57]: detection_acc = 0.000 location_date_sensor = 43 [n = 39]: detection_acc = 0.000 location_date_sensor = 44 [n = 33]: detection_acc = 0.030 location_date_sensor = 45 [n = 39]: detection_acc = 0.026 location_date_sensor = 46 [n = 30]: detection_acc = 0.133 Worst-group detection_acc: 0.000 Validation detection_acc_avg: 0.014 Epoch 2 has the best validation performance so far. 100% 365/365 [03:29<00:00, 1.74it/s] Epoch [3]: Train: 5% 49/915 [01:15<22:04, 1.53s/it]objective: 0.146 loss_avg: 0.694 location_date_sensor = 0 [n = 14]: weight: 0.054 loss: 0.587 location_date_sensor = 1 [n = 5]: weight: 0.010 loss: 0.587 location_date_sensor = 2 [n = 13]: weight: 0.028 loss: 0.587 location_date_sensor = 3 [n = 7]: weight: 0.029 loss: 0.577 location_date_sensor = 4 [n = 14]: weight: 0.051 loss: 0.679 location_date_sensor = 5 [n = 11]: weight: 0.021 loss: 0.887 location_date_sensor = 6 [n = 17]: weight: 0.032 loss: 0.692 location_date_sensor = 7 [n = 7]: weight: 0.106 loss: 0.617 location_date_sensor = 8 [n = 11]: weight: 0.041 loss: 0.679 location_date_sensor = 9 [n = 9]: weight: 0.096 loss: 0.681 location_date_sensor = 10 [n = 14]: weight: 0.093 loss: 0.814 location_date_sensor = 11 [n = 4]: weight: 0.058 loss: 0.596 location_date_sensor = 12 [n = 12]: weight: 0.032 loss: 0.708 location_date_sensor = 13 [n = 14]: weight: 0.104 loss: 0.718 location_date_sensor = 14 [n = 16]: weight: 0.082 loss: 0.813 location_date_sensor = 15 [n = 7]: weight: 0.091 loss: 0.910 location_date_sensor = 16 [n = 9]: weight: 0.053 loss: 0.605 location_date_sensor = 17 [n = 16]: weight: 0.021 loss: 0.620 11% 99/915 [02:31<20:52, 1.54s/it]objective: 0.147 loss_avg: 0.704 location_date_sensor = 0 [n = 8]: weight: 0.054 loss: 0.628 location_date_sensor = 1 [n = 11]: weight: 0.010 loss: 0.537 location_date_sensor = 2 [n = 11]: weight: 0.028 loss: 0.649 location_date_sensor = 3 [n = 20]: weight: 0.029 loss: 0.631 location_date_sensor = 4 [n = 13]: weight: 0.052 loss: 0.631 location_date_sensor = 5 [n = 11]: weight: 0.021 loss: 0.822 location_date_sensor = 6 [n = 11]: weight: 0.033 loss: 0.733 location_date_sensor = 7 [n = 11]: weight: 0.105 loss: 0.728 location_date_sensor = 8 [n = 8]: weight: 0.041 loss: 0.635 location_date_sensor = 9 [n = 12]: weight: 0.095 loss: 0.727 location_date_sensor = 10 [n = 10]: weight: 0.095 loss: 0.784 location_date_sensor = 11 [n = 9]: weight: 0.056 loss: 0.612 location_date_sensor = 12 [n = 18]: weight: 0.033 loss: 0.700 location_date_sensor = 13 [n = 8]: weight: 0.103 loss: 0.707 location_date_sensor = 14 [n = 9]: weight: 0.085 loss: 0.949 location_date_sensor = 15 [n = 12]: weight: 0.091 loss: 0.900 location_date_sensor = 16 [n = 9]: weight: 0.051 loss: 0.692 location_date_sensor = 17 [n = 9]: weight: 0.021 loss: 0.638 16% 149/915 [03:48<19:29, 1.53s/it]objective: 0.147 loss_avg: 0.698 location_date_sensor = 0 [n = 16]: weight: 0.053 loss: 0.621 location_date_sensor = 1 [n = 13]: weight: 0.010 loss: 0.542 location_date_sensor = 2 [n = 11]: weight: 0.028 loss: 0.620 location_date_sensor = 3 [n = 13]: weight: 0.029 loss: 0.575 location_date_sensor = 4 [n = 6]: weight: 0.051 loss: 0.637 location_date_sensor = 5 [n = 9]: weight: 0.021 loss: 0.678 location_date_sensor = 6 [n = 12]: weight: 0.033 loss: 0.779 location_date_sensor = 7 [n = 6]: weight: 0.105 loss: 0.693 location_date_sensor = 8 [n = 11]: weight: 0.040 loss: 0.669 location_date_sensor = 9 [n = 9]: weight: 0.094 loss: 0.686 location_date_sensor = 10 [n = 16]: weight: 0.096 loss: 0.876 location_date_sensor = 11 [n = 17]: weight: 0.056 loss: 0.612 location_date_sensor = 12 [n = 12]: weight: 0.034 loss: 0.721 location_date_sensor = 13 [n = 13]: weight: 0.105 loss: 0.753 location_date_sensor = 14 [n = 12]: weight: 0.086 loss: 1.014 location_date_sensor = 15 [n = 8]: weight: 0.091 loss: 0.793 location_date_sensor = 16 [n = 6]: weight: 0.051 loss: 0.630 location_date_sensor = 17 [n = 10]: weight: 0.021 loss: 0.627 22% 199/915 [05:04<18:10, 1.52s/it]objective: 0.148 loss_avg: 0.712 location_date_sensor = 0 [n = 5]: weight: 0.053 loss: 0.708 location_date_sensor = 1 [n = 14]: weight: 0.010 loss: 0.504 location_date_sensor = 2 [n = 10]: weight: 0.028 loss: 0.606 location_date_sensor = 3 [n = 12]: weight: 0.029 loss: 0.628 location_date_sensor = 4 [n = 19]: weight: 0.050 loss: 0.623 location_date_sensor = 5 [n = 8]: weight: 0.020 loss: 0.650 location_date_sensor = 6 [n = 13]: weight: 0.033 loss: 0.730 location_date_sensor = 7 [n = 10]: weight: 0.103 loss: 0.779 location_date_sensor = 8 [n = 4]: weight: 0.039 loss: 0.662 location_date_sensor = 9 [n = 9]: weight: 0.093 loss: 0.696 location_date_sensor = 10 [n = 14]: weight: 0.099 loss: 0.920 location_date_sensor = 11 [n = 6]: weight: 0.055 loss: 0.680 location_date_sensor = 12 [n = 14]: weight: 0.034 loss: 0.742 location_date_sensor = 13 [n = 10]: weight: 0.106 loss: 0.816 location_date_sensor = 14 [n = 10]: weight: 0.087 loss: 0.931 location_date_sensor = 15 [n = 10]: weight: 0.092 loss: 0.888 location_date_sensor = 16 [n = 18]: weight: 0.051 loss: 0.705 location_date_sensor = 17 [n = 14]: weight: 0.021 loss: 0.609 27% 249/915 [06:21<17:00, 1.53s/it]objective: 0.158 loss_avg: 0.683 location_date_sensor = 0 [n = 15]: weight: 0.051 loss: 0.611 location_date_sensor = 1 [n = 8]: weight: 0.009 loss: 0.520 location_date_sensor = 2 [n = 16]: weight: 0.028 loss: 0.568 location_date_sensor = 3 [n = 11]: weight: 0.029 loss: 0.569 location_date_sensor = 4 [n = 6]: weight: 0.051 loss: 0.623 location_date_sensor = 5 [n = 6]: weight: 0.020 loss: 0.731 location_date_sensor = 6 [n = 16]: weight: 0.034 loss: 0.722 location_date_sensor = 7 [n = 13]: weight: 0.103 loss: 0.635 location_date_sensor = 8 [n = 9]: weight: 0.038 loss: 0.674 location_date_sensor = 9 [n = 15]: weight: 0.094 loss: 0.701 location_date_sensor = 10 [n = 13]: weight: 0.101 loss: 0.844 location_date_sensor = 11 [n = 6]: weight: 0.053 loss: 0.626 location_date_sensor = 12 [n = 10]: weight: 0.034 loss: 0.703 location_date_sensor = 13 [n = 14]: weight: 0.107 loss: 0.739 location_date_sensor = 14 [n = 13]: weight: 0.089 loss: 0.868 location_date_sensor = 15 [n = 9]: weight: 0.091 loss: 0.799 location_date_sensor = 16 [n = 9]: weight: 0.051 loss: 0.652 location_date_sensor = 17 [n = 11]: weight: 0.020 loss: 0.627 33% 299/915 [07:37<15:39, 1.53s/it]objective: 0.148 loss_avg: 0.677 location_date_sensor = 0 [n = 19]: weight: 0.052 loss: 0.628 location_date_sensor = 1 [n = 7]: weight: 0.009 loss: 0.504 location_date_sensor = 2 [n = 15]: weight: 0.028 loss: 0.575 location_date_sensor = 3 [n = 10]: weight: 0.028 loss: 0.591 location_date_sensor = 4 [n = 9]: weight: 0.049 loss: 0.613 location_date_sensor = 5 [n = 9]: weight: 0.019 loss: 0.561 location_date_sensor = 6 [n = 23]: weight: 0.035 loss: 0.727 location_date_sensor = 7 [n = 12]: weight: 0.103 loss: 0.661 location_date_sensor = 8 [n = 7]: weight: 0.037 loss: 0.637 location_date_sensor = 9 [n = 10]: weight: 0.095 loss: 0.658 location_date_sensor = 10 [n = 6]: weight: 0.101 loss: 0.878 location_date_sensor = 11 [n = 4]: weight: 0.051 loss: 0.588 location_date_sensor = 12 [n = 8]: weight: 0.034 loss: 0.746 location_date_sensor = 13 [n = 10]: weight: 0.107 loss: 0.744 location_date_sensor = 14 [n = 14]: weight: 0.094 loss: 0.907 location_date_sensor = 15 [n = 17]: weight: 0.092 loss: 0.811 location_date_sensor = 16 [n = 12]: weight: 0.050 loss: 0.618 location_date_sensor = 17 [n = 8]: weight: 0.020 loss: 0.535 38% 349/915 [08:54<14:24, 1.53s/it]objective: 0.150 loss_avg: 0.677 location_date_sensor = 0 [n = 6]: weight: 0.053 loss: 0.786 location_date_sensor = 1 [n = 9]: weight: 0.009 loss: 0.542 location_date_sensor = 2 [n = 10]: weight: 0.027 loss: 0.641 location_date_sensor = 3 [n = 3]: weight: 0.027 loss: 0.652 location_date_sensor = 4 [n = 11]: weight: 0.048 loss: 0.622 location_date_sensor = 5 [n = 7]: weight: 0.018 loss: 0.633 location_date_sensor = 6 [n = 13]: weight: 0.036 loss: 0.672 location_date_sensor = 7 [n = 13]: weight: 0.103 loss: 0.639 location_date_sensor = 8 [n = 16]: weight: 0.036 loss: 0.597 location_date_sensor = 9 [n = 16]: weight: 0.094 loss: 0.704 location_date_sensor = 10 [n = 11]: weight: 0.101 loss: 0.876 location_date_sensor = 11 [n = 15]: weight: 0.050 loss: 0.592 location_date_sensor = 12 [n = 15]: weight: 0.033 loss: 0.698 location_date_sensor = 13 [n = 14]: weight: 0.109 loss: 0.723 location_date_sensor = 14 [n = 11]: weight: 0.096 loss: 0.786 location_date_sensor = 15 [n = 8]: weight: 0.093 loss: 0.870 location_date_sensor = 16 [n = 10]: weight: 0.049 loss: 0.624 location_date_sensor = 17 [n = 12]: weight: 0.020 loss: 0.617 44% 399/915 [10:10<13:06, 1.52s/it]objective: 0.148 loss_avg: 0.662 location_date_sensor = 0 [n = 10]: weight: 0.051 loss: 0.559 location_date_sensor = 1 [n = 7]: weight: 0.008 loss: 0.481 location_date_sensor = 2 [n = 15]: weight: 0.027 loss: 0.598 location_date_sensor = 3 [n = 12]: weight: 0.027 loss: 0.606 location_date_sensor = 4 [n = 11]: weight: 0.048 loss: 0.605 location_date_sensor = 5 [n = 10]: weight: 0.018 loss: 0.565 location_date_sensor = 6 [n = 9]: weight: 0.036 loss: 0.619 location_date_sensor = 7 [n = 14]: weight: 0.102 loss: 0.623 location_date_sensor = 8 [n = 5]: weight: 0.036 loss: 0.668 location_date_sensor = 9 [n = 14]: weight: 0.095 loss: 0.714 location_date_sensor = 10 [n = 12]: weight: 0.102 loss: 0.844 location_date_sensor = 11 [n = 10]: weight: 0.048 loss: 0.624 location_date_sensor = 12 [n = 13]: weight: 0.034 loss: 0.716 location_date_sensor = 13 [n = 12]: weight: 0.111 loss: 0.645 location_date_sensor = 14 [n = 6]: weight: 0.094 loss: 0.874 location_date_sensor = 15 [n = 18]: weight: 0.097 loss: 0.891 location_date_sensor = 16 [n = 9]: weight: 0.049 loss: 0.574 location_date_sensor = 17 [n = 13]: weight: 0.019 loss: 0.563 49% 449/915 [11:27<11:51, 1.53s/it]objective: 0.137 loss_avg: 0.656 location_date_sensor = 0 [n = 5]: weight: 0.049 loss: 0.581 location_date_sensor = 1 [n = 13]: weight: 0.008 loss: 0.509 location_date_sensor = 2 [n = 11]: weight: 0.027 loss: 0.568 location_date_sensor = 3 [n = 20]: weight: 0.027 loss: 0.514 location_date_sensor = 4 [n = 4]: weight: 0.046 loss: 0.648 location_date_sensor = 5 [n = 15]: weight: 0.018 loss: 0.539 location_date_sensor = 6 [n = 17]: weight: 0.035 loss: 0.642 location_date_sensor = 7 [n = 7]: weight: 0.101 loss: 0.589 location_date_sensor = 8 [n = 11]: weight: 0.036 loss: 0.638 location_date_sensor = 9 [n = 14]: weight: 0.096 loss: 0.709 location_date_sensor = 10 [n = 15]: weight: 0.105 loss: 0.820 location_date_sensor = 11 [n = 7]: weight: 0.048 loss: 0.647 location_date_sensor = 12 [n = 11]: weight: 0.034 loss: 0.761 location_date_sensor = 13 [n = 12]: weight: 0.112 loss: 0.775 location_date_sensor = 14 [n = 6]: weight: 0.093 loss: 0.761 location_date_sensor = 15 [n = 11]: weight: 0.101 loss: 0.901 location_date_sensor = 16 [n = 7]: weight: 0.047 loss: 0.804 location_date_sensor = 17 [n = 14]: weight: 0.019 loss: 0.568 55% 499/915 [12:43<10:37, 1.53s/it]objective: 0.152 loss_avg: 0.663 location_date_sensor = 0 [n = 19]: weight: 0.049 loss: 0.581 location_date_sensor = 1 [n = 13]: weight: 0.008 loss: 0.499 location_date_sensor = 2 [n = 7]: weight: 0.027 loss: 0.523 location_date_sensor = 3 [n = 12]: weight: 0.027 loss: 0.622 location_date_sensor = 4 [n = 7]: weight: 0.044 loss: 0.620 location_date_sensor = 5 [n = 10]: weight: 0.017 loss: 0.502 location_date_sensor = 6 [n = 9]: weight: 0.036 loss: 0.721 location_date_sensor = 7 [n = 11]: weight: 0.099 loss: 0.662 location_date_sensor = 8 [n = 6]: weight: 0.035 loss: 0.667 location_date_sensor = 9 [n = 12]: weight: 0.096 loss: 0.653 location_date_sensor = 10 [n = 9]: weight: 0.109 loss: 0.813 location_date_sensor = 11 [n = 12]: weight: 0.047 loss: 0.582 location_date_sensor = 12 [n = 14]: weight: 0.034 loss: 0.695 location_date_sensor = 13 [n = 11]: weight: 0.111 loss: 0.762 location_date_sensor = 14 [n = 7]: weight: 0.092 loss: 0.928 location_date_sensor = 15 [n = 18]: weight: 0.105 loss: 0.836 location_date_sensor = 16 [n = 12]: weight: 0.048 loss: 0.696 location_date_sensor = 17 [n = 11]: weight: 0.019 loss: 0.611 60% 549/915 [14:00<09:18, 1.53s/it]objective: 0.135 loss_avg: 0.659 location_date_sensor = 0 [n = 11]: weight: 0.049 loss: 0.542 location_date_sensor = 1 [n = 13]: weight: 0.008 loss: 0.544 location_date_sensor = 2 [n = 12]: weight: 0.026 loss: 0.591 location_date_sensor = 3 [n = 14]: weight: 0.027 loss: 0.581 location_date_sensor = 4 [n = 13]: weight: 0.045 loss: 0.622 location_date_sensor = 5 [n = 9]: weight: 0.018 loss: 0.713 location_date_sensor = 6 [n = 13]: weight: 0.036 loss: 0.673 location_date_sensor = 7 [n = 12]: weight: 0.098 loss: 0.612 location_date_sensor = 8 [n = 7]: weight: 0.034 loss: 0.659 location_date_sensor = 9 [n = 12]: weight: 0.096 loss: 0.640 location_date_sensor = 10 [n = 7]: weight: 0.108 loss: 0.768 location_date_sensor = 11 [n = 9]: weight: 0.046 loss: 0.567 location_date_sensor = 12 [n = 10]: weight: 0.035 loss: 0.680 location_date_sensor = 13 [n = 6]: weight: 0.108 loss: 0.886 location_date_sensor = 14 [n = 6]: weight: 0.090 loss: 0.887 location_date_sensor = 15 [n = 14]: weight: 0.113 loss: 0.816 location_date_sensor = 16 [n = 18]: weight: 0.048 loss: 0.717 location_date_sensor = 17 [n = 14]: weight: 0.019 loss: 0.601 65% 599/915 [15:16<08:04, 1.53s/it]objective: 0.152 loss_avg: 0.661 location_date_sensor = 0 [n = 6]: weight: 0.049 loss: 0.572 location_date_sensor = 1 [n = 17]: weight: 0.008 loss: 0.498 location_date_sensor = 2 [n = 10]: weight: 0.026 loss: 0.641 location_date_sensor = 3 [n = 10]: weight: 0.027 loss: 0.553 location_date_sensor = 4 [n = 14]: weight: 0.044 loss: 0.610 location_date_sensor = 5 [n = 11]: weight: 0.017 loss: 0.603 location_date_sensor = 6 [n = 10]: weight: 0.036 loss: 0.653 location_date_sensor = 7 [n = 10]: weight: 0.096 loss: 0.658 location_date_sensor = 8 [n = 8]: weight: 0.033 loss: 0.660 location_date_sensor = 9 [n = 7]: weight: 0.095 loss: 0.595 location_date_sensor = 10 [n = 10]: weight: 0.107 loss: 0.852 location_date_sensor = 11 [n = 8]: weight: 0.045 loss: 0.572 location_date_sensor = 12 [n = 9]: weight: 0.034 loss: 0.634 location_date_sensor = 13 [n = 14]: weight: 0.109 loss: 0.666 location_date_sensor = 14 [n = 17]: weight: 0.091 loss: 0.822 location_date_sensor = 15 [n = 18]: weight: 0.118 loss: 0.828 location_date_sensor = 16 [n = 11]: weight: 0.049 loss: 0.684 location_date_sensor = 17 [n = 10]: weight: 0.019 loss: 0.609 71% 649/915 [16:33<06:44, 1.52s/it]objective: 0.142 loss_avg: 0.673 location_date_sensor = 0 [n = 14]: weight: 0.048 loss: 0.650 location_date_sensor = 1 [n = 7]: weight: 0.008 loss: 0.489 location_date_sensor = 2 [n = 16]: weight: 0.026 loss: 0.627 location_date_sensor = 3 [n = 5]: weight: 0.026 loss: 0.526 location_date_sensor = 4 [n = 5]: weight: 0.043 loss: 0.594 location_date_sensor = 5 [n = 12]: weight: 0.017 loss: 0.715 location_date_sensor = 6 [n = 14]: weight: 0.036 loss: 0.691 location_date_sensor = 7 [n = 13]: weight: 0.096 loss: 0.591 location_date_sensor = 8 [n = 13]: weight: 0.033 loss: 0.623 location_date_sensor = 9 [n = 9]: weight: 0.093 loss: 0.663 location_date_sensor = 10 [n = 11]: weight: 0.107 loss: 0.838 location_date_sensor = 11 [n = 10]: weight: 0.044 loss: 0.603 location_date_sensor = 12 [n = 13]: weight: 0.035 loss: 0.762 location_date_sensor = 13 [n = 16]: weight: 0.110 loss: 0.655 location_date_sensor = 14 [n = 7]: weight: 0.092 loss: 0.891 location_date_sensor = 15 [n = 15]: weight: 0.123 loss: 0.812 location_date_sensor = 16 [n = 9]: weight: 0.048 loss: 0.602 location_date_sensor = 17 [n = 11]: weight: 0.019 loss: 0.636 76% 699/915 [17:49<05:30, 1.53s/it]objective: 0.151 loss_avg: 0.664 location_date_sensor = 0 [n = 10]: weight: 0.048 loss: 0.589 location_date_sensor = 1 [n = 14]: weight: 0.007 loss: 0.516 location_date_sensor = 2 [n = 8]: weight: 0.026 loss: 0.575 location_date_sensor = 3 [n = 15]: weight: 0.025 loss: 0.502 location_date_sensor = 4 [n = 11]: weight: 0.042 loss: 0.594 location_date_sensor = 5 [n = 10]: weight: 0.017 loss: 0.654 location_date_sensor = 6 [n = 5]: weight: 0.037 loss: 0.710 location_date_sensor = 7 [n = 8]: weight: 0.094 loss: 0.629 location_date_sensor = 8 [n = 13]: weight: 0.033 loss: 0.653 location_date_sensor = 9 [n = 4]: weight: 0.088 loss: 0.674 location_date_sensor = 10 [n = 15]: weight: 0.110 loss: 0.848 location_date_sensor = 11 [n = 10]: weight: 0.043 loss: 0.554 location_date_sensor = 12 [n = 11]: weight: 0.035 loss: 0.701 location_date_sensor = 13 [n = 9]: weight: 0.109 loss: 0.695 location_date_sensor = 14 [n = 17]: weight: 0.093 loss: 0.833 location_date_sensor = 15 [n = 14]: weight: 0.128 loss: 0.866 location_date_sensor = 16 [n = 14]: weight: 0.048 loss: 0.634 location_date_sensor = 17 [n = 12]: weight: 0.019 loss: 0.602 82% 749/915 [19:06<04:14, 1.53s/it]objective: 0.131 loss_avg: 0.635 location_date_sensor = 0 [n = 15]: weight: 0.048 loss: 0.589 location_date_sensor = 1 [n = 15]: weight: 0.007 loss: 0.467 location_date_sensor = 2 [n = 11]: weight: 0.025 loss: 0.570 location_date_sensor = 3 [n = 17]: weight: 0.025 loss: 0.543 location_date_sensor = 4 [n = 3]: weight: 0.040 loss: 0.556 location_date_sensor = 5 [n = 13]: weight: 0.017 loss: 0.667 location_date_sensor = 6 [n = 10]: weight: 0.036 loss: 0.683 location_date_sensor = 7 [n = 9]: weight: 0.092 loss: 0.559 location_date_sensor = 8 [n = 10]: weight: 0.033 loss: 0.616 location_date_sensor = 9 [n = 13]: weight: 0.088 loss: 0.665 location_date_sensor = 10 [n = 10]: weight: 0.112 loss: 0.768 location_date_sensor = 11 [n = 12]: weight: 0.043 loss: 0.561 location_date_sensor = 12 [n = 17]: weight: 0.035 loss: 0.705 location_date_sensor = 13 [n = 8]: weight: 0.107 loss: 0.645 location_date_sensor = 14 [n = 8]: weight: 0.095 loss: 0.807 location_date_sensor = 15 [n = 14]: weight: 0.131 loss: 0.816 location_date_sensor = 16 [n = 8]: weight: 0.048 loss: 0.662 location_date_sensor = 17 [n = 7]: weight: 0.019 loss: 0.562 87% 799/915 [20:22<02:57, 1.53s/it]objective: 0.160 loss_avg: 0.660 location_date_sensor = 0 [n = 10]: weight: 0.047 loss: 0.524 location_date_sensor = 1 [n = 13]: weight: 0.007 loss: 0.589 location_date_sensor = 2 [n = 11]: weight: 0.025 loss: 0.552 location_date_sensor = 3 [n = 6]: weight: 0.026 loss: 0.552 location_date_sensor = 4 [n = 10]: weight: 0.039 loss: 0.652 location_date_sensor = 5 [n = 9]: weight: 0.017 loss: 0.603 location_date_sensor = 6 [n = 5]: weight: 0.035 loss: 0.750 location_date_sensor = 7 [n = 12]: weight: 0.090 loss: 0.647 location_date_sensor = 8 [n = 10]: weight: 0.033 loss: 0.619 location_date_sensor = 9 [n = 8]: weight: 0.088 loss: 0.616 location_date_sensor = 10 [n = 11]: weight: 0.112 loss: 0.824 location_date_sensor = 11 [n = 14]: weight: 0.043 loss: 0.570 location_date_sensor = 12 [n = 7]: weight: 0.035 loss: 0.820 location_date_sensor = 13 [n = 20]: weight: 0.109 loss: 0.711 location_date_sensor = 14 [n = 10]: weight: 0.097 loss: 0.857 location_date_sensor = 15 [n = 13]: weight: 0.135 loss: 0.861 location_date_sensor = 16 [n = 10]: weight: 0.047 loss: 0.607 location_date_sensor = 17 [n = 21]: weight: 0.019 loss: 0.582 93% 849/915 [21:39<01:40, 1.53s/it]objective: 0.137 loss_avg: 0.634 location_date_sensor = 0 [n = 12]: weight: 0.047 loss: 0.537 location_date_sensor = 1 [n = 11]: weight: 0.007 loss: 0.531 location_date_sensor = 2 [n = 13]: weight: 0.025 loss: 0.577 location_date_sensor = 3 [n = 15]: weight: 0.025 loss: 0.525 location_date_sensor = 4 [n = 10]: weight: 0.038 loss: 0.572 location_date_sensor = 5 [n = 13]: weight: 0.017 loss: 0.689 location_date_sensor = 6 [n = 7]: weight: 0.034 loss: 0.670 location_date_sensor = 7 [n = 10]: weight: 0.089 loss: 0.571 location_date_sensor = 8 [n = 15]: weight: 0.032 loss: 0.615 location_date_sensor = 9 [n = 12]: weight: 0.086 loss: 0.709 location_date_sensor = 10 [n = 11]: weight: 0.113 loss: 0.748 location_date_sensor = 11 [n = 15]: weight: 0.042 loss: 0.522 location_date_sensor = 12 [n = 11]: weight: 0.036 loss: 0.696 location_date_sensor = 13 [n = 6]: weight: 0.111 loss: 0.632 location_date_sensor = 14 [n = 11]: weight: 0.098 loss: 0.798 location_date_sensor = 15 [n = 14]: weight: 0.139 loss: 0.824 location_date_sensor = 16 [n = 5]: weight: 0.045 loss: 0.686 location_date_sensor = 17 [n = 9]: weight: 0.018 loss: 0.575 98% 899/915 [22:55<00:24, 1.53s/it]objective: 0.163 loss_avg: 0.675 location_date_sensor = 0 [n = 8]: weight: 0.045 loss: 0.546 location_date_sensor = 1 [n = 13]: weight: 0.007 loss: 0.530 location_date_sensor = 2 [n = 13]: weight: 0.025 loss: 0.593 location_date_sensor = 3 [n = 9]: weight: 0.024 loss: 0.535 location_date_sensor = 4 [n = 10]: weight: 0.038 loss: 0.618 location_date_sensor = 5 [n = 11]: weight: 0.017 loss: 0.639 location_date_sensor = 6 [n = 15]: weight: 0.033 loss: 0.710 location_date_sensor = 7 [n = 11]: weight: 0.087 loss: 0.620 location_date_sensor = 8 [n = 9]: weight: 0.032 loss: 0.643 location_date_sensor = 9 [n = 7]: weight: 0.083 loss: 0.700 location_date_sensor = 10 [n = 16]: weight: 0.116 loss: 0.790 location_date_sensor = 11 [n = 11]: weight: 0.042 loss: 0.578 location_date_sensor = 12 [n = 14]: weight: 0.036 loss: 0.664 location_date_sensor = 13 [n = 14]: weight: 0.111 loss: 0.757 location_date_sensor = 14 [n = 14]: weight: 0.099 loss: 0.820 location_date_sensor = 15 [n = 12]: weight: 0.144 loss: 0.882 location_date_sensor = 16 [n = 6]: weight: 0.043 loss: 0.679 location_date_sensor = 17 [n = 7]: weight: 0.018 loss: 0.676 100% 915/915 [23:19<00:00, 1.53s/it] objective: 0.139 loss_avg: 0.667 location_date_sensor = 0 [n = 3]: weight: 0.045 loss: 0.672 location_date_sensor = 1 [n = 2]: weight: 0.007 loss: 0.653 location_date_sensor = 2 [n = 6]: weight: 0.024 loss: 0.551 location_date_sensor = 3 [n = 2]: weight: 0.024 loss: 0.618 location_date_sensor = 4 [n = 1]: weight: 0.037 loss: 0.758 location_date_sensor = 6 [n = 1]: weight: 0.034 loss: 0.675 location_date_sensor = 7 [n = 3]: weight: 0.088 loss: 0.658 location_date_sensor = 8 [n = 4]: weight: 0.032 loss: 0.608 location_date_sensor = 9 [n = 4]: weight: 0.083 loss: 0.681 location_date_sensor = 10 [n = 1]: weight: 0.117 loss: 0.775 location_date_sensor = 11 [n = 3]: weight: 0.042 loss: 0.551 location_date_sensor = 12 [n = 7]: weight: 0.036 loss: 0.720 location_date_sensor = 13 [n = 3]: weight: 0.111 loss: 0.686 location_date_sensor = 14 [n = 4]: weight: 0.101 loss: 0.834 location_date_sensor = 15 [n = 3]: weight: 0.144 loss: 0.877 location_date_sensor = 16 [n = 4]: weight: 0.043 loss: 0.623 location_date_sensor = 17 [n = 6]: weight: 0.018 loss: 0.597 Epoch eval: Average detection_acc: 0.782 location_date_sensor = 0 [n = 206]: detection_acc = 0.823 location_date_sensor = 1 [n = 205]: detection_acc = 0.874 location_date_sensor = 2 [n = 219]: detection_acc = 0.880 location_date_sensor = 3 [n = 213]: detection_acc = 0.827 location_date_sensor = 4 [n = 177]: detection_acc = 0.815 location_date_sensor = 5 [n = 184]: detection_acc = 0.792 location_date_sensor = 6 [n = 220]: detection_acc = 0.767 location_date_sensor = 7 [n = 192]: detection_acc = 0.773 location_date_sensor = 8 [n = 177]: detection_acc = 0.770 location_date_sensor = 9 [n = 196]: detection_acc = 0.641 location_date_sensor = 10 [n = 212]: detection_acc = 0.741 location_date_sensor = 11 [n = 182]: detection_acc = 0.733 location_date_sensor = 12 [n = 226]: detection_acc = 0.745 location_date_sensor = 13 [n = 214]: detection_acc = 0.808 location_date_sensor = 14 [n = 198]: detection_acc = 0.752 location_date_sensor = 15 [n = 235]: detection_acc = 0.772 location_date_sensor = 16 [n = 186]: detection_acc = 0.722 location_date_sensor = 17 [n = 215]: detection_acc = 0.820 Worst-group detection_acc: 0.641 Validation: 100% 348/348 [03:19<00:00, 1.74it/s] objective: 0.000 loss_avg: 1.000 location_date_sensor = 18 [n = 12]: weight: 0.000 loss: 1.000 location_date_sensor = 19 [n = 49]: weight: 0.000 loss: 1.000 location_date_sensor = 20 [n = 254]: weight: 0.000 loss: 1.000 location_date_sensor = 21 [n = 216]: weight: 0.000 loss: 1.000 location_date_sensor = 22 [n = 89]: weight: 0.000 loss: 1.000 location_date_sensor = 23 [n = 11]: weight: 0.000 loss: 1.000 location_date_sensor = 24 [n = 4]: weight: 0.000 loss: 1.000 location_date_sensor = 25 [n = 7]: weight: 0.000 loss: 1.000 location_date_sensor = 26 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 27 [n = 17]: weight: 0.000 loss: 1.000 location_date_sensor = 28 [n = 14]: weight: 0.000 loss: 1.000 location_date_sensor = 29 [n = 8]: weight: 0.000 loss: 1.000 location_date_sensor = 30 [n = 43]: weight: 0.000 loss: 1.000 location_date_sensor = 31 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 32 [n = 51]: weight: 0.000 loss: 1.000 location_date_sensor = 33 [n = 50]: weight: 0.000 loss: 1.000 location_date_sensor = 34 [n = 28]: weight: 0.000 loss: 1.000 location_date_sensor = 35 [n = 75]: weight: 0.000 loss: 1.000 location_date_sensor = 36 [n = 56]: weight: 0.000 loss: 1.000 location_date_sensor = 37 [n = 34]: weight: 0.000 loss: 1.000 location_date_sensor = 38 [n = 55]: weight: 0.000 loss: 1.000 location_date_sensor = 39 [n = 13]: weight: 0.000 loss: 1.000 location_date_sensor = 40 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 41 [n = 19]: weight: 0.000 loss: 1.000 location_date_sensor = 42 [n = 57]: weight: 0.000 loss: 1.000 location_date_sensor = 43 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 44 [n = 33]: weight: 0.000 loss: 1.000 location_date_sensor = 45 [n = 39]: weight: 0.000 loss: 1.000 location_date_sensor = 46 [n = 30]: weight: 0.000 loss: 1.000 Epoch eval: Average detection_acc: 0.016 location_date_sensor = 18 [n = 12]: detection_acc = 0.000 location_date_sensor = 19 [n = 49]: detection_acc = 0.020 location_date_sensor = 20 [n = 254]: detection_acc = 0.000 location_date_sensor = 21 [n = 216]: detection_acc = 0.000 location_date_sensor = 22 [n = 89]: detection_acc = 0.000 location_date_sensor = 23 [n = 11]: detection_acc = 0.091 location_date_sensor = 24 [n = 4]: detection_acc = 0.750 location_date_sensor = 25 [n = 7]: detection_acc = 0.286 location_date_sensor = 26 [n = 14]: detection_acc = 0.071 location_date_sensor = 27 [n = 17]: detection_acc = 0.059 location_date_sensor = 28 [n = 14]: detection_acc = 0.000 location_date_sensor = 29 [n = 8]: detection_acc = 0.000 location_date_sensor = 30 [n = 43]: detection_acc = 0.000 location_date_sensor = 31 [n = 55]: detection_acc = 0.000 location_date_sensor = 32 [n = 51]: detection_acc = 0.000 location_date_sensor = 33 [n = 50]: detection_acc = 0.000 location_date_sensor = 34 [n = 28]: detection_acc = 0.000 location_date_sensor = 35 [n = 75]: detection_acc = 0.040 location_date_sensor = 36 [n = 56]: detection_acc = 0.071 location_date_sensor = 37 [n = 34]: detection_acc = 0.000 location_date_sensor = 38 [n = 55]: detection_acc = 0.000 location_date_sensor = 39 [n = 13]: detection_acc = 0.000 location_date_sensor = 40 [n = 19]: detection_acc = 0.000 location_date_sensor = 41 [n = 19]: detection_acc = 0.000 location_date_sensor = 42 [n = 57]: detection_acc = 0.000 location_date_sensor = 43 [n = 39]: detection_acc = 0.000 location_date_sensor = 44 [n = 33]: detection_acc = 0.030 location_date_sensor = 45 [n = 39]: detection_acc = 0.026 location_date_sensor = 46 [n = 30]: detection_acc = 0.133 Worst-group detection_acc: 0.000 Validation detection_acc_avg: 0.016 Epoch 3 has the best validation performance so far. 100% 365/365 [03:29<00:00, 1.74it/s] Epoch [4]: Train: 5% 49/915 [01:15<22:04, 1.53s/it]objective: 0.134 loss_avg: 0.634 location_date_sensor = 0 [n = 12]: weight: 0.045 loss: 0.524 location_date_sensor = 1 [n = 10]: weight: 0.007 loss: 0.519 location_date_sensor = 2 [n = 16]: weight: 0.025 loss: 0.598 location_date_sensor = 3 [n = 7]: weight: 0.023 loss: 0.516 location_date_sensor = 4 [n = 9]: weight: 0.036 loss: 0.557 location_date_sensor = 5 [n = 7]: weight: 0.016 loss: 0.615 location_date_sensor = 6 [n = 11]: weight: 0.034 loss: 0.752 location_date_sensor = 7 [n = 14]: weight: 0.088 loss: 0.575 location_date_sensor = 8 [n = 15]: weight: 0.032 loss: 0.618 location_date_sensor = 9 [n = 11]: weight: 0.083 loss: 0.685 location_date_sensor = 10 [n = 9]: weight: 0.116 loss: 0.749 location_date_sensor = 11 [n = 12]: weight: 0.042 loss: 0.575 location_date_sensor = 12 [n = 10]: weight: 0.036 loss: 0.732 location_date_sensor = 13 [n = 16]: weight: 0.112 loss: 0.633 location_date_sensor = 14 [n = 7]: weight: 0.100 loss: 0.877 location_date_sensor = 15 [n = 9]: weight: 0.147 loss: 0.844 location_date_sensor = 16 [n = 8]: weight: 0.043 loss: 0.635 location_date_sensor = 17 [n = 17]: weight: 0.018 loss: 0.573 11% 99/915 [02:31<20:45, 1.53s/it]objective: 0.135 loss_avg: 0.640 location_date_sensor = 0 [n = 16]: weight: 0.045 loss: 0.666 location_date_sensor = 1 [n = 17]: weight: 0.007 loss: 0.508 location_date_sensor = 2 [n = 13]: weight: 0.025 loss: 0.535 location_date_sensor = 3 [n = 5]: weight: 0.022 loss: 0.532 location_date_sensor = 4 [n = 10]: weight: 0.036 loss: 0.556 location_date_sensor = 5 [n = 13]: weight: 0.016 loss: 0.633 location_date_sensor = 6 [n = 3]: weight: 0.034 loss: 0.673 location_date_sensor = 7 [n = 9]: weight: 0.088 loss: 0.590 location_date_sensor = 8 [n = 16]: weight: 0.032 loss: 0.588 location_date_sensor = 9 [n = 12]: weight: 0.083 loss: 0.683 location_date_sensor = 10 [n = 15]: weight: 0.118 loss: 0.886 location_date_sensor = 11 [n = 9]: weight: 0.041 loss: 0.583 location_date_sensor = 12 [n = 9]: weight: 0.036 loss: 0.655 location_date_sensor = 13 [n = 9]: weight: 0.111 loss: 0.586 location_date_sensor = 14 [n = 12]: weight: 0.101 loss: 0.776 location_date_sensor = 15 [n = 10]: weight: 0.147 loss: 0.816 location_date_sensor = 16 [n = 13]: weight: 0.043 loss: 0.628 location_date_sensor = 17 [n = 9]: weight: 0.018 loss: 0.560 16% 149/915 [03:48<19:35, 1.53s/it]objective: 0.133 loss_avg: 0.643 location_date_sensor = 0 [n = 16]: weight: 0.045 loss: 0.554 location_date_sensor = 1 [n = 12]: weight: 0.007 loss: 0.546 location_date_sensor = 2 [n = 13]: weight: 0.025 loss: 0.566 location_date_sensor = 3 [n = 10]: weight: 0.022 loss: 0.540 location_date_sensor = 4 [n = 9]: weight: 0.035 loss: 0.619 location_date_sensor = 5 [n = 13]: weight: 0.016 loss: 0.588 location_date_sensor = 6 [n = 14]: weight: 0.032 loss: 0.687 location_date_sensor = 7 [n = 7]: weight: 0.084 loss: 0.549 location_date_sensor = 8 [n = 9]: weight: 0.033 loss: 0.599 location_date_sensor = 9 [n = 6]: weight: 0.082 loss: 0.680 location_date_sensor = 10 [n = 10]: weight: 0.121 loss: 0.809 location_date_sensor = 11 [n = 16]: weight: 0.040 loss: 0.520 location_date_sensor = 12 [n = 14]: weight: 0.036 loss: 0.716 location_date_sensor = 13 [n = 7]: weight: 0.109 loss: 0.779 location_date_sensor = 14 [n = 15]: weight: 0.106 loss: 0.853 location_date_sensor = 15 [n = 10]: weight: 0.147 loss: 0.778 location_date_sensor = 16 [n = 9]: weight: 0.042 loss: 0.697 location_date_sensor = 17 [n = 10]: weight: 0.018 loss: 0.557 22% 199/915 [05:04<18:16, 1.53s/it]objective: 0.139 loss_avg: 0.637 location_date_sensor = 0 [n = 10]: weight: 0.045 loss: 0.488 location_date_sensor = 1 [n = 14]: weight: 0.007 loss: 0.498 location_date_sensor = 2 [n = 11]: weight: 0.025 loss: 0.614 location_date_sensor = 3 [n = 8]: weight: 0.021 loss: 0.580 location_date_sensor = 4 [n = 12]: weight: 0.035 loss: 0.594 location_date_sensor = 5 [n = 11]: weight: 0.016 loss: 0.668 location_date_sensor = 6 [n = 8]: weight: 0.032 loss: 0.669 location_date_sensor = 7 [n = 11]: weight: 0.082 loss: 0.550 location_date_sensor = 8 [n = 13]: weight: 0.032 loss: 0.603 location_date_sensor = 9 [n = 6]: weight: 0.078 loss: 0.659 location_date_sensor = 10 [n = 8]: weight: 0.120 loss: 0.719 location_date_sensor = 11 [n = 11]: weight: 0.040 loss: 0.515 location_date_sensor = 12 [n = 13]: weight: 0.037 loss: 0.678 location_date_sensor = 13 [n = 17]: weight: 0.112 loss: 0.641 location_date_sensor = 14 [n = 13]: weight: 0.109 loss: 0.838 location_date_sensor = 15 [n = 14]: weight: 0.150 loss: 0.798 location_date_sensor = 16 [n = 7]: weight: 0.042 loss: 0.807 location_date_sensor = 17 [n = 13]: weight: 0.018 loss: 0.581 27% 249/915 [06:21<17:00, 1.53s/it]objective: 0.155 loss_avg: 0.647 location_date_sensor = 0 [n = 9]: weight: 0.045 loss: 0.515 location_date_sensor = 1 [n = 4]: weight: 0.007 loss: 0.534 location_date_sensor = 2 [n = 11]: weight: 0.024 loss: 0.615 location_date_sensor = 3 [n = 10]: weight: 0.021 loss: 0.579 location_date_sensor = 4 [n = 13]: weight: 0.035 loss: 0.615 location_date_sensor = 5 [n = 13]: weight: 0.016 loss: 0.541 location_date_sensor = 6 [n = 10]: weight: 0.031 loss: 0.636 location_date_sensor = 7 [n = 12]: weight: 0.082 loss: 0.614 location_date_sensor = 8 [n = 14]: weight: 0.032 loss: 0.593 location_date_sensor = 9 [n = 9]: weight: 0.078 loss: 0.703 location_date_sensor = 10 [n = 15]: weight: 0.122 loss: 0.787 location_date_sensor = 11 [n = 14]: weight: 0.040 loss: 0.561 location_date_sensor = 12 [n = 8]: weight: 0.036 loss: 0.699 location_date_sensor = 13 [n = 10]: weight: 0.111 loss: 0.604 location_date_sensor = 14 [n = 16]: weight: 0.113 loss: 0.852 location_date_sensor = 15 [n = 12]: weight: 0.150 loss: 0.760 location_date_sensor = 16 [n = 7]: weight: 0.041 loss: 0.725 location_date_sensor = 17 [n = 13]: weight: 0.018 loss: 0.577 33% 299/915 [07:37<15:38, 1.52s/it]objective: 0.141 loss_avg: 0.636 location_date_sensor = 0 [n = 15]: weight: 0.044 loss: 0.511 location_date_sensor = 1 [n = 11]: weight: 0.006 loss: 0.504 location_date_sensor = 2 [n = 12]: weight: 0.024 loss: 0.590 location_date_sensor = 3 [n = 11]: weight: 0.020 loss: 0.516 location_date_sensor = 4 [n = 9]: weight: 0.034 loss: 0.581 location_date_sensor = 5 [n = 14]: weight: 0.016 loss: 0.751 location_date_sensor = 6 [n = 11]: weight: 0.031 loss: 0.625 location_date_sensor = 7 [n = 14]: weight: 0.081 loss: 0.576 location_date_sensor = 8 [n = 4]: weight: 0.031 loss: 0.634 location_date_sensor = 9 [n = 12]: weight: 0.077 loss: 0.618 location_date_sensor = 10 [n = 13]: weight: 0.124 loss: 0.749 location_date_sensor = 11 [n = 10]: weight: 0.040 loss: 0.553 location_date_sensor = 12 [n = 15]: weight: 0.036 loss: 0.701 location_date_sensor = 13 [n = 11]: weight: 0.110 loss: 0.624 location_date_sensor = 14 [n = 11]: weight: 0.117 loss: 0.861 location_date_sensor = 15 [n = 10]: weight: 0.152 loss: 0.759 location_date_sensor = 16 [n = 7]: weight: 0.040 loss: 0.721 location_date_sensor = 17 [n = 10]: weight: 0.018 loss: 0.587 38% 349/915 [08:54<14:28, 1.53s/it]objective: 0.126 loss_avg: 0.632 location_date_sensor = 0 [n = 13]: weight: 0.044 loss: 0.529 location_date_sensor = 1 [n = 11]: weight: 0.006 loss: 0.514 location_date_sensor = 2 [n = 14]: weight: 0.024 loss: 0.593 location_date_sensor = 3 [n = 15]: weight: 0.020 loss: 0.553 location_date_sensor = 4 [n = 11]: weight: 0.034 loss: 0.574 location_date_sensor = 5 [n = 11]: weight: 0.016 loss: 0.658 location_date_sensor = 6 [n = 13]: weight: 0.032 loss: 0.679 location_date_sensor = 7 [n = 9]: weight: 0.082 loss: 0.625 location_date_sensor = 8 [n = 9]: weight: 0.031 loss: 0.628 location_date_sensor = 9 [n = 12]: weight: 0.078 loss: 0.626 location_date_sensor = 10 [n = 8]: weight: 0.125 loss: 0.764 location_date_sensor = 11 [n = 11]: weight: 0.039 loss: 0.512 location_date_sensor = 12 [n = 16]: weight: 0.038 loss: 0.705 location_date_sensor = 13 [n = 8]: weight: 0.108 loss: 0.606 location_date_sensor = 14 [n = 9]: weight: 0.119 loss: 0.918 location_date_sensor = 15 [n = 6]: weight: 0.150 loss: 0.816 location_date_sensor = 16 [n = 11]: weight: 0.040 loss: 0.647 location_date_sensor = 17 [n = 13]: weight: 0.017 loss: 0.607 44% 399/915 [10:10<13:09, 1.53s/it]objective: 0.147 loss_avg: 0.660 location_date_sensor = 0 [n = 13]: weight: 0.044 loss: 0.515 location_date_sensor = 1 [n = 10]: weight: 0.006 loss: 0.551 location_date_sensor = 2 [n = 12]: weight: 0.024 loss: 0.558 location_date_sensor = 3 [n = 9]: weight: 0.020 loss: 0.560 location_date_sensor = 4 [n = 10]: weight: 0.033 loss: 0.573 location_date_sensor = 5 [n = 15]: weight: 0.017 loss: 0.794 location_date_sensor = 6 [n = 8]: weight: 0.032 loss: 0.640 location_date_sensor = 7 [n = 10]: weight: 0.081 loss: 0.538 location_date_sensor = 8 [n = 10]: weight: 0.030 loss: 0.633 location_date_sensor = 9 [n = 7]: weight: 0.077 loss: 0.704 location_date_sensor = 10 [n = 9]: weight: 0.124 loss: 0.813 location_date_sensor = 11 [n = 9]: weight: 0.038 loss: 0.533 location_date_sensor = 12 [n = 17]: weight: 0.040 loss: 0.746 location_date_sensor = 13 [n = 14]: weight: 0.109 loss: 0.686 location_date_sensor = 14 [n = 15]: weight: 0.121 loss: 0.805 location_date_sensor = 15 [n = 14]: weight: 0.150 loss: 0.800 location_date_sensor = 16 [n = 8]: weight: 0.039 loss: 0.546 location_date_sensor = 17 [n = 10]: weight: 0.018 loss: 0.657 49% 449/915 [11:26<11:51, 1.53s/it]objective: 0.139 loss_avg: 0.652 location_date_sensor = 0 [n = 9]: weight: 0.044 loss: 0.550 location_date_sensor = 1 [n = 6]: weight: 0.006 loss: 0.551 location_date_sensor = 2 [n = 12]: weight: 0.024 loss: 0.660 location_date_sensor = 3 [n = 10]: weight: 0.020 loss: 0.553 location_date_sensor = 4 [n = 10]: weight: 0.032 loss: 0.577 location_date_sensor = 5 [n = 12]: weight: 0.017 loss: 0.701 location_date_sensor = 6 [n = 17]: weight: 0.032 loss: 0.762 location_date_sensor = 7 [n = 15]: weight: 0.080 loss: 0.548 location_date_sensor = 8 [n = 11]: weight: 0.030 loss: 0.598 location_date_sensor = 9 [n = 9]: weight: 0.077 loss: 0.645 location_date_sensor = 10 [n = 13]: weight: 0.125 loss: 0.753 location_date_sensor = 11 [n = 12]: weight: 0.038 loss: 0.505 location_date_sensor = 12 [n = 10]: weight: 0.040 loss: 0.684 location_date_sensor = 13 [n = 12]: weight: 0.111 loss: 0.643 location_date_sensor = 14 [n = 8]: weight: 0.120 loss: 0.896 location_date_sensor = 15 [n = 7]: weight: 0.152 loss: 0.853 location_date_sensor = 16 [n = 12]: weight: 0.039 loss: 0.623 location_date_sensor = 17 [n = 15]: weight: 0.017 loss: 0.659 55% 499/915 [12:43<10:35, 1.53s/it]objective: 0.147 loss_avg: 0.636 location_date_sensor = 0 [n = 8]: weight: 0.042 loss: 0.556 location_date_sensor = 1 [n = 13]: weight: 0.006 loss: 0.510 location_date_sensor = 2 [n = 12]: weight: 0.024 loss: 0.546 location_date_sensor = 3 [n = 9]: weight: 0.019 loss: 0.570 location_date_sensor = 4 [n = 11]: weight: 0.032 loss: 0.590 location_date_sensor = 5 [n = 11]: weight: 0.017 loss: 0.688 location_date_sensor = 6 [n = 7]: weight: 0.033 loss: 0.739 location_date_sensor = 7 [n = 6]: weight: 0.079 loss: 0.659 location_date_sensor = 8 [n = 14]: weight: 0.030 loss: 0.617 location_date_sensor = 9 [n = 12]: weight: 0.076 loss: 0.668 location_date_sensor = 10 [n = 8]: weight: 0.126 loss: 0.777 location_date_sensor = 11 [n = 14]: weight: 0.037 loss: 0.545 location_date_sensor = 12 [n = 10]: weight: 0.040 loss: 0.688 location_date_sensor = 13 [n = 14]: weight: 0.110 loss: 0.611 location_date_sensor = 14 [n = 6]: weight: 0.118 loss: 0.805 location_date_sensor = 15 [n = 18]: weight: 0.156 loss: 0.816 location_date_sensor = 16 [n = 14]: weight: 0.039 loss: 0.610 location_date_sensor = 17 [n = 13]: weight: 0.017 loss: 0.564 60% 549/915 [13:59<09:20, 1.53s/it]objective: 0.141 loss_avg: 0.647 location_date_sensor = 0 [n = 11]: weight: 0.041 loss: 0.535 location_date_sensor = 1 [n = 9]: weight: 0.006 loss: 0.514 location_date_sensor = 2 [n = 11]: weight: 0.023 loss: 0.614 location_date_sensor = 3 [n = 10]: weight: 0.019 loss: 0.545 location_date_sensor = 4 [n = 6]: weight: 0.031 loss: 0.587 location_date_sensor = 5 [n = 12]: weight: 0.017 loss: 0.705 location_date_sensor = 6 [n = 14]: weight: 0.032 loss: 0.700 location_date_sensor = 7 [n = 12]: weight: 0.078 loss: 0.633 location_date_sensor = 8 [n = 15]: weight: 0.030 loss: 0.586 location_date_sensor = 9 [n = 8]: weight: 0.074 loss: 0.645 location_date_sensor = 10 [n = 7]: weight: 0.125 loss: 0.689 location_date_sensor = 11 [n = 9]: weight: 0.037 loss: 0.540 location_date_sensor = 12 [n = 14]: weight: 0.040 loss: 0.672 location_date_sensor = 13 [n = 12]: weight: 0.111 loss: 0.633 location_date_sensor = 14 [n = 16]: weight: 0.121 loss: 0.815 location_date_sensor = 15 [n = 8]: weight: 0.162 loss: 0.861 location_date_sensor = 16 [n = 12]: weight: 0.038 loss: 0.690 location_date_sensor = 17 [n = 14]: weight: 0.017 loss: 0.602 65% 599/915 [15:16<08:02, 1.53s/it]objective: 0.141 loss_avg: 0.629 location_date_sensor = 0 [n = 9]: weight: 0.041 loss: 0.464 location_date_sensor = 1 [n = 14]: weight: 0.006 loss: 0.504 location_date_sensor = 2 [n = 7]: weight: 0.023 loss: 0.562 location_date_sensor = 3 [n = 7]: weight: 0.018 loss: 0.552 location_date_sensor = 4 [n = 13]: weight: 0.031 loss: 0.559 location_date_sensor = 5 [n = 14]: weight: 0.017 loss: 0.613 location_date_sensor = 6 [n = 10]: weight: 0.032 loss: 0.670 location_date_sensor = 7 [n = 11]: weight: 0.077 loss: 0.541 location_date_sensor = 8 [n = 10]: weight: 0.030 loss: 0.574 location_date_sensor = 9 [n = 4]: weight: 0.071 loss: 0.570 location_date_sensor = 10 [n = 14]: weight: 0.123 loss: 0.682 location_date_sensor = 11 [n = 12]: weight: 0.036 loss: 0.548 location_date_sensor = 12 [n = 12]: weight: 0.039 loss: 0.697 location_date_sensor = 13 [n = 11]: weight: 0.110 loss: 0.626 location_date_sensor = 14 [n = 10]: weight: 0.126 loss: 0.868 location_date_sensor = 15 [n = 13]: weight: 0.164 loss: 0.892 location_date_sensor = 16 [n = 13]: weight: 0.039 loss: 0.651 location_date_sensor = 17 [n = 16]: weight: 0.018 loss: 0.637 67% 612/915 [15:36<07:43, 1.53s/it]
Preparing a submission¶
The WILDS library saves predictions in *_pred.pth
files. To prepare them for submission to our competition, we have to transform them into the appropriate format.
import torch
import pandas as pd
pred_false_val = torch.load(f"{SAVE_TO}/gwhd_split:val_seed:{N_EPOCHS-1}_epoch:{N_EPOCHS-1}_pred.pth")
pred_false_test = torch.load(f"{SAVE_TO}/gwhd_split:test_seed:{N_EPOCHS-1}_epoch:{N_EPOCHS-1}_pred.pth")
false_val = pd.read_csv("data/gwhd_v0.9/official_val.csv")
false_test = pd.read_csv("data/gwhd_v0.9/official_test.csv")
assert len(false_val) == len(pred_false_val)
assert len(pred_false_test) == len(pred_false_test)
def encodeBoxes(tensor_boxes,score_thr=0.5):
boxes = tensor_boxes["boxes"].numpy()
scores = tensor_boxes["scores"].numpy()
boxes = boxes[scores > score_thr]
strboxes = ";".join([" ".join([str(int(i)) for i in box]) for box in boxes])
if len(strboxes) == 0:
strboxes = "no_box"
return strboxes
encoded_boxes = [encodeBoxes(tensor_boxes) for tensor_boxes in pred_false_val]
false_val["PredString"] = encoded_boxes
encoded_boxes = [encodeBoxes(tensor_boxes) for tensor_boxes in pred_false_test]
false_test["PredString"] = encoded_boxes
Sanity check before submission¶
We can check few predictions to get an idea of how well the training went
test_img = "data/gwhd_v0.9/images/"+ false_test["image_name"].values[1]
print(test_img)
import cv2
import matplotlib.pyplot as plt
test_img = cv2.imread(test_img)
boxes = pred_false_test[1]["boxes"].numpy()
scores = pred_false_test[1]["scores"].numpy()
boxes = boxes[scores >0.5] # we set a naive threshold here
for (x,y,xx,yy) in boxes:
cv2.rectangle(test_img,(int(x),int(y)),(int(xx),int(yy)),(255,0,0),5)
plt.imshow(test_img[...,::-1])
Writing submission file¶
results = pd.concat([false_test,false_val]) #Val and test does not correspond to the true split
del results["BoxesString"] # We need to remove this column or it causes damage :)
results["image_name"] = results["image_name"].apply(lambda x: x.replace(".png","")) # we need to remove the extension
results.to_csv("submission_final.csv",index=False)
Making Direct Submission thought Aicrowd CLI¶
!aicrowd submission create -c global-wheat-challenge-2021 -f submission_final.csv
Content
Comments
You must login before you can post a comment.